Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28572816

RESUMO

BACKGROUND: Major drawbacks of the available treatment against Chagas disease (American trypanosomiasis) include its toxicity and therapeutic inefficiency in the chronic phase of the infection, which makes it a concern among neglected diseases. Therefore, the discovery of alternative drugs for treating chronic Chagas disease requires immediate action. In this work, we evaluated the mushroom Pleurotus salmoneostramineus in the search for potential antiparasitic compounds. METHODS: Fruit bodies of the basidiomycete Pleurotus salmoneostramineus were triturated and submitted to organic solvent extraction. After liquid-liquid partition of the crude extract, three fractions were obtained and the bioguided fractionation study was conducted to isolate the active metabolites. The elucidation of the chemical structure was performed using GC-MS and NMR techniques. The biological assays for antiparasitic activity were carried out using trypomastigotes of Trypanosoma cruzi and murine macrophages for mammalian cytotoxicity. The mechanism of action of the isolated compound used different fluorescent probes to evaluate the plasma membrane permeability, the potential of the mitochondrial membrane and the intracellular levels of reactive oxygen species (ROS). RESULTS: The most abundant fraction showing the antiparasitic activity was isolated and chemically elucidated, confirming the presence of ergosterol. It showed anti-Trypanosoma cruzi activity against trypomastigotes, with an IC50 value of 51.3 µg/mL. The compound demonstrated no cytotoxicity against mammalian cells to the maximal tested concentration of 200 µg/mL. The mechanism of action of ergosterol in Trypanosoma cruzi trypomastigotes resulted in permeabilization of the plasma membrane, as well as depolarization of mitochondrial membrane potential, leading to parasite death. Nevertheless, no increase in ROS levels could be observed, suggesting damages to plasma membrane rather than an induction of oxidative stress in the parasite. CONCLUSIONS: The selection of naturally antiparasitic secondary metabolites in basidiomycetes, such as ergosterol, may provide potential scaffolds for drug design studies against neglected diseases.

2.
Artigo em Inglês | VETINDEX | ID: vti-18551

RESUMO

Background Major drawbacks of the available treatment against Chagas disease (American trypanosomiasis) include its toxicity and therapeutic inefficiency in the chronic phase of the infection, which makes it a concern among neglected diseases. Therefore, the discovery of alternative drugs for treating chronic Chagas disease requires immediate action. In this work, we evaluated the mushroom Pleurotus salmoneostramineus in the search for potential antiparasitic compounds. Methods Fruit bodies of the basidiomycete Pleurotus salmoneostramineus were triturated and submitted to organic solvent extraction. After liquid-liquid partition of the crude extract, three fractions were obtained and the bioguided fractionation study was conducted to isolate the active metabolites. The elucidation of the chemical structure was performed using GC-MS and NMR techniques. The biological assays for antiparasitic activity were carried out using trypomastigotes of Trypanosoma cruzi and murine macrophages for mammalian cytotoxicity. The mechanism of action of the isolated compound used different fluorescent probes to evaluate the plasma membrane permeability, the potential of the mitochondrial membrane and the intracellular levels of reactive oxygen species (ROS). Results The most abundant fraction showing the antiparasitic activity was isolated and chemically elucidated, confirming the presence of ergosterol. It showed anti-Trypanosoma cruzi activity against trypomastigotes, with an IC50 value of 51.3 μg/mL. The compound demonstrated no cytotoxicity against mammalian cells to the maximal tested concentration of 200 μg/mL. The mechanism of action of ergosterol in Trypanosoma cruzi trypomastigotes resulted in permeabilization of the plasma membrane, as well as depolarization of mitochondrial membrane potential, leading to parasite death. Nevertheless, no increase in ROS levels could be observed, suggesting damages to plasma membrane rather than an induction of oxidative stress in the parasite. Conclusions The selection of naturally antiparasitic secondary metabolites in basidiomycetes, such as ergosterol, may provide potential scaffolds for drug design studies against neglected diseases.(AU)


Assuntos
Pleurotus , Ergosterol/análise , Trypanosoma cruzi , Antiparasitários , Tripanossomíase
3.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;232017.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484715

RESUMO

Abstract Background Major drawbacks of the available treatment against Chagas disease (American trypanosomiasis) include its toxicity and therapeutic inefficiency in the chronic phase of the infection, which makes it a concern among neglected diseases. Therefore, the discovery of alternative drugs for treating chronic Chagas disease requires immediate action. In this work, we evaluated the mushroom Pleurotus salmoneostramineus in the search for potential antiparasitic compounds. Methods Fruit bodies of the basidiomycete Pleurotus salmoneostramineus were triturated and submitted to organic solvent extraction. After liquid-liquid partition of the crude extract, three fractions were obtained and the bioguided fractionation study was conducted to isolate the active metabolites. The elucidation of the chemical structure was performed using GC-MS and NMR techniques. The biological assays for antiparasitic activity were carried out using trypomastigotes of Trypanosoma cruzi and murine macrophages for mammalian cytotoxicity. The mechanism of action of the isolated compound used different fluorescent probes to evaluate the plasma membrane permeability, the potential of the mitochondrial membrane and the intracellular levels of reactive oxygen species (ROS). Results The most abundant fraction showing the antiparasitic activity was isolated and chemically elucidated, confirming the presence of ergosterol. It showed anti-Trypanosoma cruzi activity against trypomastigotes, with an IC50 value of 51.3 g/mL. The compound demonstrated no cytotoxicity against mammalian cells to the maximal tested concentration of 200 g/mL. The mechanism of action of ergosterol in Trypanosoma cruzi trypomastigotes resulted in permeabilization of the plasma membrane, as well as depolarization of mitochondrial membrane potential, leading to parasite death. Nevertheless, no increase in ROS levels could be observed, suggesting damages to plasma membrane rather than an induction of oxidative stress in the parasite. Conclusions The selection of naturally antiparasitic secondary metabolites in basidiomycetes, such as ergosterol, may provide potential scaffolds for drug design studies against neglected diseases.

4.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;23: 30, 2017. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954820

RESUMO

Background Major drawbacks of the available treatment against Chagas disease (American trypanosomiasis) include its toxicity and therapeutic inefficiency in the chronic phase of the infection, which makes it a concern among neglected diseases. Therefore, the discovery of alternative drugs for treating chronic Chagas disease requires immediate action. In this work, we evaluated the mushroom Pleurotus salmoneostramineus in the search for potential antiparasitic compounds. Methods Fruit bodies of the basidiomycete Pleurotus salmoneostramineus were triturated and submitted to organic solvent extraction. After liquid-liquid partition of the crude extract, three fractions were obtained and the bioguided fractionation study was conducted to isolate the active metabolites. The elucidation of the chemical structure was performed using GC-MS and NMR techniques. The biological assays for antiparasitic activity were carried out using trypomastigotes of Trypanosoma cruzi and murine macrophages for mammalian cytotoxicity. The mechanism of action of the isolated compound used different fluorescent probes to evaluate the plasma membrane permeability, the potential of the mitochondrial membrane and the intracellular levels of reactive oxygen species (ROS). Results The most abundant fraction showing the antiparasitic activity was isolated and chemically elucidated, confirming the presence of ergosterol. It showed anti-Trypanosoma cruzi activity against trypomastigotes, with an IC50 value of 51.3 μg/mL. The compound demonstrated no cytotoxicity against mammalian cells to the maximal tested concentration of 200 μg/mL. The mechanism of action of ergosterol in Trypanosoma cruzi trypomastigotes resulted in permeabilization of the plasma membrane, as well as depolarization of mitochondrial membrane potential, leading to parasite death. Nevertheless, no increase in ROS levels could be observed, suggesting damages to plasma membrane rather than an induction of oxidative stress in the parasite. Conclusions The selection of naturally antiparasitic secondary metabolites in basidiomycetes, such as ergosterol, may provide potential scaffolds for drug design studies against neglected diseases.(AU)


Assuntos
Trypanosoma cruzi , Basidiomycota , Bioensaio , Membrana Celular , Doença de Chagas , Pleurotus , Ergosterol , Mitocôndrias
5.
Molecules ; 18(1): 1053-62, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23322069

RESUMO

The present study describes the leishmanicidal and trypanocidal activities of two quinonemethide triterpenes, maytenin (1) and pristimerin (2), isolated from Maytenus ilicifolia root barks (Celastraceae). The compounds were effective against the Trypanosomatidae Leishmania amazonensis and Leishmania chagasi and Trypanosoma cruzi, etiologic agents of leishmaniasis and Chagas' disease, respectively. The quinonemethide triterpenes 1 and 2 exhibited a marked in vitro leishmanicidal activity against promastigotes and amastigotes with 50% inhibitory concentration (IC(50)) values of less than 0.88 nM. Both compounds showed IC(50) lower than 0.3 nM against Trypanosoma cruzi epimastigotes. The selectivity indexes (SI) based on BALB/c macrophages for L. amazonensis and L. chagasi were 243.65 and 46.61 for (1) and 193.63 and 23.85 for (2) indicating that both compounds presented high selectivity for Leishmania sp. The data here presented suggests that these compounds should be considered in the development of new and more potent drugs for the treatment of leishmaniasis and Chagas' disease.


Assuntos
Maytenus/química , Extratos Vegetais/farmacologia , Quinonas/farmacologia , Triterpenos/farmacologia , Tripanossomicidas/farmacologia , Animais , Células Cultivadas , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Dose Letal Mediana , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/toxicidade , Raízes de Plantas/química , Quinonas/toxicidade , Triterpenos/toxicidade , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos
6.
Mem Inst Oswaldo Cruz ; 106(4): 475-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21739037

RESUMO

The in vitro leishmanicidal activity of miltefosine® (Zentaris GmbH) was assessed against four medically relevant Leishmania species of Brazil: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis and Leishmania (Leishmania) chagasi. The activity of miltefosine against these New World species was compared to its activity against the Old World strain, Leishmania (Leishmania) donovani, which is known to be sensitive to the effects of miltefosine. The IC50 and IC90 results suggested the New World species harboured similar in vitro susceptibilities to miltefosine; however, miltefosine was approximately 20 times more active against the Old World L. (L.) donovani than against the New World L. (L.) chagasi species. The selectivity index varied from 17.2-28.9 for the New World Leishmania species and up to 420.0 for L. (L.) donovani. The differences in susceptibility to miltefosine suggest that future clinical trials with this drug should include a laboratory pre-evaluation and a dose-defining step.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Animais , Antiprotozoários/classificação , Concentração Inibidora 50 , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Fosforilcolina/farmacologia
7.
Mem. Inst. Oswaldo Cruz ; 106(4): 475-478, June 2011. tab
Artigo em Inglês | LILACS | ID: lil-592191

RESUMO

The in vitro leishmanicidal activity of miltefosine® (Zentaris GmbH) was assessed against four medically relevant Leishmania species of Brazil: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis and Leishmania (Leishmania) chagasi. The activity of miltefosine against these New World species was compared to its activity against the Old World strain, Leishmania (Leishmania) donovani, which is known to be sensitive to the effects of miltefosine. The IC50 and IC90 results suggested the New World species harboured similar in vitro susceptibilities to miltefosine; however, miltefosine was approximately 20 times more active against the Old World L. (L.) donovani than against the New World L. (L.) chagasi species. The selectivity index varied from 17.2-28.9 for the New World Leishmania species and up to 420.0 for L. (L.) donovani. The differences in susceptibility to miltefosine suggest that future clinical trials with this drug should include a laboratory pre-evaluation and a dose-defining step.


Assuntos
Animais , Camundongos , Antiprotozoários , Leishmania , Fosforilcolina/análogos & derivados , Antiprotozoários , Camundongos Endogâmicos BALB C , Macrófagos , Testes de Sensibilidade Parasitária , Fosforilcolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA