Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366095

RESUMO

The rise of digitalization, sensory devices, cloud computing and internet of things (IoT) technologies enables the design of novel digital product lifecycle management (DPLM) applications for use cases such as manufacturing and delivery of digital products. The verification of the accomplishment/violations of agreements defined in digital contracts is a key task in digital business transactions. However, this verification represents a challenge when validating both the integrity of digital product content and the transactions performed during multiple stages of the DPLM. This paper presents a traceability method for DPLM based on the integration of online and offline verification mechanisms based on blockchain and fingerprinting, respectively. A blockchain lifecycle registration model is used for organizations to register the exchange of digital products in the cloud with partners and/or consumers throughout the DPLM stages as well as to verify the accomplishment of agreements at each DPLM stage. The fingerprinting scheme is used for offline verification of digital product integrity and to register the DPLM logs within digital products, which is useful in either dispute or violation of agreements scenarios. We built a DPLM service prototype based on this method, which was implemented as a cloud computing service. A case study based on the DPLM of audios was conducted to evaluate this prototype. The experimental evaluation revealed the ability of this method to be applied to DPLM in real scenarios in an efficient manner.


Assuntos
Blockchain , Internet das Coisas , Segurança Computacional , Computação em Nuvem , Tecnologia
2.
Entropy (Basel) ; 22(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316972

RESUMO

The most common machine-learning methods solve supervised and unsupervised problems based on datasets where the problem's features belong to a numerical space. However, many problems often include data where numerical and categorical data coexist, which represents a challenge to manage them. To transform categorical data into a numeric form, preprocessing tasks are compulsory. Methods such as one-hot and feature-hashing have been the most widely used encoding approaches at the expense of a significant increase in the dimensionality of the dataset. This effect introduces unexpected challenges to deal with the overabundance of variables and/or noisy data. In this regard, in this paper we propose a novel encoding approach that maps mixed-type data into an information space using Shannon's Theory to model the amount of information contained in the original data. We evaluated our proposal with ten mixed-type datasets from the UCI repository and two datasets representing real-world problems obtaining promising results. For demonstrating the performance of our proposal, this was applied for preparing these datasets for classification, regression, and clustering tasks. We demonstrate that our encoding proposal is remarkably superior to one-hot and feature-hashing encoding in terms of memory efficiency. Our proposal can preserve the information conveyed by the original data.

3.
Sensors (Basel) ; 20(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212750

RESUMO

A progressive paradigm shift from centralized to distributed network architectures has been consolidated since the 4G communication standard, calling for novel decision-making mechanisms with distributed control to operate at the network edge. This situation implies that each base station (BS) must manage resources independently to meet the quality of service (QoS) of existing human-type communication devices (HTC), as well as the emerging machine type communication (MTC) devices from the internet of things (IoT). In this paper, we address the BS assignment problem, whose aim is to determine the most appropriate serving BS to each mobile device. This problem is formulated as an optimization problem for maximizing the system throughput and imposing constraints on the air interface and backhaul resources. The assignment problem is challenging to solve, so we present a simple yet valid reformulation of the original problem while using dual decomposition theory. Subsequently, we propose a distributed price-based BS assignment algorithm that performs at each BS the assignment process, where a novel pricing update scheme is presented. The simulation results show that our proposed solution outperforms traditional maximum signal to interference plus noise ratio (Max-SINR) and minimum path-loss (Min-PL) approaches in terms of system throughput.

4.
Sensors (Basel) ; 20(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936004

RESUMO

Vehicular ad-hoc Networks (VANETs) are recognized as a cornerstone of Intelligent Transportation Systems (ITS) to enable the exchange of information among vehicles, which is crucial for the provision of safety-related and entertainment applications. However, practical useful realizations of VANETs are still missing, mainly because of the elevated costs and the lack of a final standardization. In this regard, the feasibility of using smartphones as nodes in VANETs has been explored focusing on small-scale deployments to mainly validate single-hop communication capabilities. Moreover, existing smartphone-based platforms do not consider two crucial requirements in VANETs, namely, multi-hop communication and the provision of security services in the message dissemination process. Furthermore, the problem of securing message dissemination in VANETs is generally analyzed through simulation tools, while performance evaluations on smart devices have not been reported so far. In this paper, we aim to fill this void by designing a fully on-device platform for secure multi-hop message dissemination. We address the multi-hop nature of message dissemination in VANETs by integrating a location-based protocol that enables the selection of relay nodes and retransmissions criteria. As a main distinction, the platform incorporates a novel certificateless cryptographic scheme for ensuring data integrity and nodes' authentication, suitable for VANETs lacking of infrastructure.

5.
Sensors (Basel) ; 19(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781622

RESUMO

Mobile Edge Computing (MEC) relates to the deployment of decision-making processes at the network edge or mobile devices rather than in a centralized network entity like the cloud. This paradigm shift is acknowledged as one key pillar to enable autonomous operation and self-awareness in mobile devices in IoT. Under this paradigm, we focus on mobility-based services (MBSs), where mobile devices are expected to perform energy-efficient GPS data acquisition while also providing location accuracy. We rely on a fully on-device Cognitive Dynamic Systems (CDS) platform to propose and evaluate a cognitive controller aimed at both tackling the presence of uncertainties and exploiting the mobility information learned by such CDS toward energy-efficient and accurate location tracking via mobility-aware sampling policies. We performed a set of experiments and validated that the proposed control strategy outperformed similar approaches in terms of energy savings and spatio-temporal accuracy in LBS and MBS for smartphone devices.


Assuntos
Cognição/fisiologia , Amplitude de Movimento Articular/fisiologia , Humanos , Smartphone
6.
Sensors (Basel) ; 16(10)2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27754388

RESUMO

The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection. Such Mobile Cloud Computing approach has been successfully employed for extending smartphone's battery lifetime by exchanging computation costs, assuming that on-device stay points detection is prohibitive. In this article, we propose and validate the feasibility of having an alternative event-driven mechanism for stay points detection that is executed fully on-device, and that provides higher energy savings by avoiding communication costs. Our solution is encapsulated in a sensing middleware for Android smartphones, where a stream of GPS location updates is collected in the background, supporting duty cycling schemes, and incrementally analyzed following an event-driven paradigm for stay points detection. To evaluate the performance of the proposed middleware, real world experiments were conducted under different stress levels, validating its power efficiency when compared against a Mobile Cloud Computing oriented solution.

7.
Sensors (Basel) ; 14(12): 23673-96, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25513821

RESUMO

The disruptive innovation of smartphone technology has enabled the development of mobile sensing applications leveraged on specialized sensors embedded in the device. These novel mobile phone applications rely on advanced sensor information processes, which mainly involve raw data acquisition, feature extraction, data interpretation and transmission. However, the continuous accessing of sensing resources to acquire sensor data in smartphones is still very expensive in terms of energy, particularly due to the periodic use of power-intensive sensors, such as the Global Positioning System (GPS) receiver. The key underlying idea to design energy-efficient schemes is to control the duty cycle of the GPS receiver. However, adapting the sensing rate based on dynamic context changes through a flexible middleware has received little attention in the literature. In this paper, we propose a novel modular middleware architecture and runtime environment to directly interface with application programming interfaces (APIs) and embedded sensors in order to manage the duty cycle process based on energy and context aspects. The proposed solution has been implemented in the Android software stack. It allows continuous location tracking in a timely manner and in a transparent way to the user. It also enables the deployment of sensing policies to appropriately control the sampling rate based on both energy and perceived context. We validate the proposed solution taking into account a reference location-based service (LBS) architecture. A cloud-based storage service along with online mobility analysis tools have been used to store and access sensed data. Experimental measurements demonstrate the feasibility and efficiency of our middleware, in terms of energy and location resolution.


Assuntos
Telefone Celular , Sistemas de Informação Geográfica , Humanos , Software , Tecnologia sem Fio
8.
ScientificWorldJournal ; 2014: 359636, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133224

RESUMO

Vehicular ad hoc networks (VANETs) have been identified as a key technology to enable intelligent transport systems (ITS), which are aimed to radically improve the safety, comfort, and greenness of the vehicles in the road. However, in order to fully exploit VANETs potential, several issues must be addressed. Because of the high dynamic of VANETs and the impairments in the wireless channel, one key issue arising when working with VANETs is the multihop dissemination of broadcast packets for safety and infotainment applications. In this paper a reliable low-overhead multihop broadcast (RLMB) protocol is proposed to address the well-known broadcast storm problem. The proposed RLMB takes advantage of the hello messages exchanged between the vehicles and it processes such information to intelligently select a relay set and reduce the redundant broadcast. Additionally, to reduce the hello messages rate dependency, RLMB uses a point-to-zone link evaluation approach. RLMB performance is compared with one of the leading multihop broadcast protocols existing to date. Performance metrics show that our RLMB solution outperforms the leading protocol in terms of important metrics such as packet dissemination ratio, overhead, and delay.


Assuntos
Redes de Comunicação de Computadores , Modelos Teóricos , Veículos Automotores , Tecnologia sem Fio/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA