Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(4): 3110-3123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37937827

RESUMO

PURPOSE: Computer-aided diagnosis (CAD) systems on breast ultrasound (BUS) aim to increase the efficiency and effectiveness of breast screening, helping specialists to detect and classify breast lesions. CAD system development requires a set of annotated images, including lesion segmentation, biopsy results to specify benign and malignant cases, and BI-RADS categories to indicate the likelihood of malignancy. Besides, standardized partitions of training, validation, and test sets promote reproducibility and fair comparisons between different approaches. Thus, we present a publicly available BUS dataset whose novelty is the substantial increment of cases with the above-mentioned annotations and the inclusion of standardized partitions to objectively assess and compare CAD systems. ACQUISITION AND VALIDATION METHODS: The BUS dataset comprises 1875 anonymized images from 1064 female patients acquired via four ultrasound scanners during systematic studies at the National Institute of Cancer (Rio de Janeiro, Brazil). The dataset includes biopsy-proven tumors divided into 722 benign and 342 malignant cases. Besides, a senior ultrasonographer performed a BI-RADS assessment in categories 2 to 5. Additionally, the ultrasonographer manually outlined the breast lesions to obtain ground truth segmentations. Furthermore, 5- and 10-fold cross-validation partitions are provided to standardize the training and test sets to evaluate and reproduce CAD systems. Finally, to validate the utility of the BUS dataset, an evaluation framework is implemented to assess the performance of deep neural networks for segmenting and classifying breast lesions. DATA FORMAT AND USAGE NOTES: The BUS dataset is publicly available for academic and research purposes through an open-access repository under the name BUS-BRA: A Breast Ultrasound Dataset for Assessing CAD Systems. BUS images and reference segmentations are saved in Portable Network Graphic (PNG) format files, and the dataset information is stored in separate Comma-Separated Value (CSV) files. POTENTIAL APPLICATIONS: The BUS-BRA dataset can be used to develop and assess artificial intelligence-based lesion detection and segmentation methods, and the classification of BUS images into pathological classes and BI-RADS categories. Other potential applications include developing image processing methods like despeckle filtering and contrast enhancement methods to improve image quality and feature engineering for image description.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Feminino , Humanos , Reprodutibilidade dos Testes , Brasil , Ultrassonografia Mamária/métodos , Computadores , Neoplasias da Mama/diagnóstico por imagem
2.
Data Brief ; 52: 109908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38093853

RESUMO

Around the world, citrus production and quality are threatened by diseases caused by fungi, bacteria, and viruses. Citrus growers are currently demanding technological solutions to reduce the economic losses caused by citrus diseases. In this context, image analysis techniques have been widely used to detect citrus diseases, extracting discriminant features from an input image to distinguish between healthy and abnormal cases. The dataset presented in this article is helpful for training, validating, and comparing citrus abnormality detection algorithms. The data collection comprises 953 color images taken from the orange leaves of Citrus sinensis (L.) Osbeck species. There are 12 nutritional deficiencies and diseases supporting the development of automatic detection methods that can reduce economic losses in citrus production.

3.
Med Biol Eng Comput ; 61(12): 3193-3207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713158

RESUMO

Breast ultrasound (BUS) image classification in benign and malignant classes is often based on pre-trained convolutional neural networks (CNNs) to cope with small-sized training data. Nevertheless, BUS images are single-channel gray-level images, whereas pre-trained CNNs learned from color images with red, green, and blue (RGB) components. Thus, a gray-to-color conversion method is applied to fit the BUS image to the CNN's input layer size. This paper evaluates 13 gray-to-color conversion methods proposed in the literature that follow three strategies: replicating the gray-level image to all RGB channels, decomposing the image to enhance inherent information like the lesion's texture and morphology, and learning a matching layer. Besides, we introduce an image decomposition method based on the lesion's structural information to describe its inner and outer complexity. These gray-to-color conversion methods are evaluated under the same experimental framework using a pre-trained CNN architecture named ResNet-18 and a BUS dataset with more than 3000 images. In addition, the Matthews correlation coefficient (MCC), sensitivity (SEN), and specificity (SPE) measure the classification performance. The experimental results show that decomposition methods outperform replication and learning-based methods when using information from the lesion's binary mask (obtained from a segmentation method), reaching an MCC value greater than 0.70 and specificity up to 0.92, although the sensitivity is about 0.80. On the other hand, regarding the proposed method, the trade-off between sensitivity and specificity is better balanced, obtaining about 0.88 for both indices and an MCC of 0.73. This study contributes to the objective assessment of different gray-to-color conversion approaches in classifying breast lesions, revealing that mask-based decomposition methods improve classification performance. Besides, the proposed method based on structural information improves the sensitivity, obtaining more reliable classification results on malignant cases and potentially benefiting clinical practice.


Assuntos
Mama , Redes Neurais de Computação , Feminino , Humanos , Mama/diagnóstico por imagem , Ultrassonografia , Ultrassonografia Mamária , Sensibilidade e Especificidade
4.
Comput Methods Programs Biomed ; 153: 33-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29157459

RESUMO

BACKGROUND AND OBJECTIVE: Conventional computer-aided diagnosis (CAD) systems for breast ultrasound (BUS) are trained to classify pathological classes, that is, benign and malignant. However, from a clinical perspective, this kind of classification does not agree totally with radiologists' diagnoses. Usually, the tumors are assessed by using a BI-RADS (Breast Imaging-Reporting and Data System) category and, accordingly, a recommendation is emitted: annual study for category 2 (benign), six-month follow-up study for category 3 (probably benign), and biopsy for categories 4 and 5 (suspicious of malignancy). Hence, in this paper, a CAD system based on BI-RADS categories weighted by pathological information is presented. The goal is to increase the classification performance by reducing the common class imbalance found in pathological classes as well as to provide outcomes quite similar to radiologists' recommendations. METHODS: The BUS dataset considers 781 benign lesions and 347 malignant tumors proven by biopsy. Moreover, every lesion is associated to one BI-RADS category in the set {2, 3, 4, 5}. Thus, the dataset is split into three weighted classes: benign, BI-RADS 2 in benign lesions; probably benign, BI-RADS 3 and 4 in benign lesions; and malignant, BI-RADS 4 and 5 in malignant lesions. Thereafter, a random forest (RF) classifier, denoted by RFw, is trained to predict the weighted BI-RADS classes. In addition, for comparison purposes, a RF classifier is trained to predict pathological classes, denoted as RFp. RESULTS: The ability of the classifiers to predict the pathological classes is measured by the area under the ROC curve (AUC), sensitivity (SEN), and specificity (SPE). The RFw classifier obtained AUC=0.872,SEN=0.826, and SPE=0.919, whereas the RFp classifier reached AUC=0.868,SEN=0.808, and SPE=0.929. According to a one-way analysis of variance test, the RFw classifier statistically outperforms (p < 0.001) the RFp classifier in terms of the AUC and SEN. Moreover, the classification performance of RFw to predict weighted BI-RADS classes is given by the Matthews correlation coefficient that obtained 0.614. CONCLUSIONS: The division of the classification problem into three classes reduces the imbalance between benign and malignant classes; thus, the sensitivity is increased without degrading the specificity. Therefore, the CAD based on weighted BI-RADS classes improves the classification performance of the conventional CAD systems. Additionally, the proposed approach has the advantage of being capable of providing a multiclass outcome related to radiologists' recommendations.


Assuntos
Doenças Mamárias/diagnóstico por imagem , Mama/diagnóstico por imagem , Diagnóstico por Computador , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/patologia , Doenças Mamárias/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA