Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 51(3): 339-355, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35103980

RESUMO

Anastrepha fraterculus (Wiedmann) is an important American pest species. Knowledge of its population dynamics is of particular interest for ecology, evolutionary biology, and management programs. In the present study, phenotypic, genotypic, and spatial data were combined, within the frame of landscape genetics, to uncover the spatial population genetic structure (SGS) and demographic processes of an Argentinian local population from the Yungas ecoregion. Eight simple sequence repeats (SSR) loci and six morphometric traits were analysed considering the hierarchical levels: tree/fruit/individual. Genetic variability estimates were high (HE = 0.72, RA = 4.39). Multivariate analyses of phenotypic data showed that in average 52.81% of variance is explained by the tree level, followed by between individuals 28.37%. Spatial analysis of morphological traits revealed a negative autocorrelation in all cases. SGS analysis and isolation by distance based on SSR showed no significant autocorrelation for molecular coancestry. The comparison between phenotypic (PST) and molecular (FST) differentiation identified positive selection in different fruits for all traits. Bayesian analysis revealed a cryptic structure within the population, with three clusters spatially separated. The results of this study showed a metapopulation dynamics. The genetic background of the components of this metapopulation is expected to change through time due to seasonality, repopulation activities, and high gene flow, with an estimated dispersal ability of at least 10 km. Effective population size (Ne) of the metapopulation was estimated in around 800 flies, and within subpopulations (clusters) Ne was associated with the levels of genetic drift experienced by the founding lineages.


Assuntos
Genética Populacional , Tephritidae , Animais , Teorema de Bayes , Drosophila/genética , Variação Genética , Repetições de Microssatélites , Dinâmica Populacional , América do Sul , Tephritidae/genética
2.
BMC Genet ; 15 Suppl 2: S12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25471175

RESUMO

Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.


Assuntos
Controle Biológico de Vetores , Tephritidae/genética , Animais , Argentina , Biotecnologia , Cromossomos de Insetos/efeitos da radiação , Feminino , Genética Populacional , Infertilidade/genética , Masculino , Controle Biológico de Vetores/métodos , Radiação , Doses de Radiação , Comportamento Sexual Animal , Tephritidae/fisiologia , Tephritidae/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA