Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Drug Dev Res ; 85(2): e22175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567708

RESUMO

Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
2.
J Mater Sci Mater Med ; 35(1): 20, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526669

RESUMO

Xyloglucan is a rigid polysaccharide that belongs to the carbohydrate family. This hemicellulose compound has been widely used in biomedical research because of its pseudoplastic, mucoadhesive, mucomimetic, and biocompatibility properties. Xyloglucan is a polyose with no amino groups in its structure, which also limits its range of applications. It is still unknown whether grafting hydrophilic monomers onto xyloglucan can produce derivatives that overcome these shortcomings. This work aimed to prepare the first copolymers in which N-hydroxyethyl acrylamide is grafted onto tamarind xyloglucan by free-radical polymerization. The biocompatibility of these structures in vitro was evaluated using human dermal fibroblasts. Gamma radiation-induced graft polymerization was employed as an initiator by varying the radiation dose from 5-25 kGy. The structure of the graft copolymer, Xy-g-poly(N-hydroxyethyl acrylamide), was verified by thermal analysis, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The findings indicate that the degree of grafting and the cytotoxicity/viability of the xyloglucan-based copolymer were independent of dose. Notably, the grafted galactoxyloglucan exhibited efficient support for human dermal fibroblasts, showing heightened proliferative capacity and superior migration capabilities compared to the unmodified polymer. This copolymer might have the potential to be used in skin tissue engineering.


Assuntos
Acrilamida , Glucanos , Polímeros , Humanos , Acrilamida/química , Polimerização , Polímeros/química , Xilanos/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Antioxidants (Basel) ; 13(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38539865

RESUMO

The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO system potentiated mutagenesis (HPM), and subsequent hyperresistance, contributes to the damaging effects of hydrogen peroxide (H2O2) (HPHR). The mechanism(s) that connect the accumulation of the mutagenic lesion 8-OxoG with the ability of B. subtilis to evolve and survive the noxious effects of oxidative stress were dissected. Genetic and biochemical evidence indicated that the synthesis of KatA was exacerbated, in a PerR-independent manner, and the transcriptional coupling repair factor, Mfd, contributed to HPHR and HPM of the ΔGO strain. Moreover, these phenotypes are associated with wider pleiotropic effects, as revealed by a global proteome analysis. The inactivation of the GO system results in the upregulated production of KatA, and it reprograms the synthesis of the proteins involved in distinct types of cellular stress; this has a direct impact on (i) cysteine catabolism, (ii) the synthesis of iron-sulfur clusters, (iii) the reorganization of cell wall architecture, (iv) the activation of AhpC/AhpF-independent organic peroxide resistance, and (v) increased resistance to transcription-acting antibiotics. Therefore, to contend with the cytotoxic and genotoxic effects derived from the accumulation of 8-OxoG, B. subtilis activates the synthesis of proteins belonging to transcriptional regulons that respond to a wide, diverse range of cell stressors.

4.
Int J Biol Macromol ; 262(Pt 1): 129999, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331080

RESUMO

In recent years, chitosan (CS) has received much attention as a functional biopolymer for various applications, especially in the biomedical field. It is a natural polysaccharide created by the chemical deacetylation of chitin (CT) that is nontoxic, biocompatible, and biodegradable. This natural polymer is difficult to process; however, chemical modification of the CS backbone allows improved use of functional derivatives. CS and its derivatives are used to prepare hydrogels, membranes, scaffolds, fibers, foams, and sponges, primarily for regenerative medicine. Tissue engineering (TE), currently one of the fastest-growing fields in the life sciences, primarily aims to restore or replace lost or damaged organs and tissues using supports that, combined with cells and biomolecules, generate new tissue. In this sense, the growing interest in the application of biomaterials based on CS and some of its derivatives is justifiable. This review aims to summarize the most important recent advances in developing biomaterials based on CS and its derivatives and to study their synthesis, characterization, and applications in the biomedical field, especially in the TE area.


Assuntos
Quitosana , Quitosana/uso terapêutico , Quitosana/química , Engenharia Tecidual , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Medicina Regenerativa , Alicerces Teciduais
5.
J Biol Eng ; 18(1): 12, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273413

RESUMO

BACKGROUND: Polymeric nanoparticles can be used for wound closure and therapeutic compound delivery, among other biomedical applications. Although there are several nanoparticle obtention methods, it is crucial to know the adequate parameters to achieve better results. Therefore, the objective of this study was to optimize the parameters for the synthesis, purification, and freeze-drying of chitosan nanoparticles. We evaluated the conditions of agitation speed, anion addition time, solution pH, and chitosan and sodium tripolyphosphate concentration. RESULTS: Chitosan nanoparticles presented an average particle size of 172.8 ± 3.937 nm, PDI of 0.166 ± 0.008, and zeta potential of 25.00 ± 0.79 mV, at the concentration of 0.1% sodium tripolyphosphate and chitosan (pH 5.5), with a dripping time of 2 min at 500 rpm. The most representative factor during nanoparticle fabrication was the pH of the chitosan solution, generating significant changes in particle size and polydispersity index. The observed behavior is attributed to the possible excess of sodium tripolyphosphate during synthesis. We added the surfactants poloxamer 188 and polysorbate 80 to evaluate the stability improvement during purification (centrifugation or dialysis). These surfactants decreased coalescence between nanoparticles, especially during purification. The centrifugation increased the zeta potential to 40.8-56.2 mV values, while the dialyzed samples led to smaller particle sizes (152-184 nm). Finally, freeze-drying of the chitosan nanoparticles proceeded using two cryoprotectants, trehalose and sucrose. Both adequately protected the system during the process, and the sugar concentration depended on the purification process. CONCLUSIONS: In Conclusion, we must consider each surfactant's benefits in formulations for selecting the most suitable. Also, it is necessary to do more studies with the molecule to load. At the same time, the use of sucrose and trehalose generates adequate protection against the freeze-drying process, even at a 5% w/v concentration. However, adjusting the percentage concentration by weight must be made to work with the CS-TPP NPs purified by dialysis.

6.
Vet Parasitol ; 327: 110113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232512

RESUMO

In this study, we present the preparation, stability, and in vivo fasciolicidal activity of three new intramuscular formulations in sheep of a prodrug based on triclabendazole, named fosfatriclaben. The new formulations were ready-to-use aqueous solutions with volumes recommended for intramuscular administration in sheep. The use of poloxamers (P-407 and P-188) and polysorbates (PS-20 and PS-80) in the new formulations improved the aqueous solubility of fosfatriclaben by 8-fold at pH 7.4. High-performance liquid chromatography with UV detection was used to evaluate the stability of fosfatriclaben in the three formulations. High recovery (> 90%) of fosfatriclaben was found for all formulations after exposure at 57 ± 2 °C for 50 h. The three intramuscular formulations showed high fasciolicidal activity at a dose of 6 mg/kg, which was equivalent to the triclabendazole content. The fasciolicidal activity of fosfatriclaben was similar to commercial oral (Fasimec®) and intramuscular (Endovet®) triclabendazole formulations at a dose of 12 mg/kg. In the in vivo experiments, all formulations administered intramuscularly reduced egg excretion by 100%, and formulations F1, F2, and F3 presented fasciolicidal activities of 100%, 100%, and 99.6%, respectively.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Fasciolíase , Pró-Fármacos , Doenças dos Ovinos , Animais , Ovinos , Triclabendazol , Fasciolíase/veterinária , Anti-Helmínticos/uso terapêutico , Pró-Fármacos/química , Benzimidazóis/uso terapêutico , Doenças dos Ovinos/tratamento farmacológico , Água/química
7.
Eur J Neurosci ; 59(7): 1441-1459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151481

RESUMO

Dopamine D2 receptor (D2R) is expressed in striatopallidal neurons and decreases forskolin-stimulated cyclic adenine monophosphate (cAMP) accumulation and gamma-aminobutyric acid (GABA) release. Dopamine D3 receptor (D3R) mRNA is expressed in a population of striatal D2R-expressing neurons. Also, D3R protein and binding have been reported in the neuropil of globus pallidus. We explore whether D2R and D3R colocalize in striatopallidal terminals and whether D3R modulates the D2R effect on forskolin-stimulated [3H]cAMP accumulation in pallidal synaptosomes and high K+ stimulated-[3H]GABA release in pallidal slices. Previous reports in heterologous systems indicate that calmodulin (CaM) and CaMKII modulate D2R and D3R functions; thus, we study whether this system regulates its functional interaction. D2R immunoprecipitates with CaM, and pretreatment with ophiobolin A or depolarization of synaptosomes with 15 mM of K+ decreases it. Both treatments increase the D2R inhibition of forskolin-stimulated [3H]cAMP accumulation when activated with quinpirole, indicating a negative modulation of CaM on D2R function. Quinpirole also activates D3R, potentiating D2R inhibition of cAMP accumulation in the ophiobolin A-treated synaptosomes. D2R and D3R immunoprecipitate in pallidal synaptosomes and decrease after the kainic acid striatal lesion, indicating the striatal origin of the presynaptic receptors. CaM-kinase II alfa (CaMKIIα) immunoprecipitates with D3R and increases after high K+ depolarization. In the presence of KN62, a CaMKIIα blocker, D3R potentiates D2R effects on cAMP accumulation in depolarized synaptosomes and GABA release in pallidal slices, indicating D3R function regulation by CaMKIIα. Our data indicate that D3R potentiates the D2R effect on cAMP accumulation and GABA release at pallidal terminals, an interaction regulated by the CaM-CaMKIIα system.


Assuntos
Calmodulina , Receptores de Dopamina D3 , Sesterterpenos , Receptores de Dopamina D3/metabolismo , Quimpirol/farmacologia , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Colforsina , Receptores de Dopamina D2/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
Cells ; 12(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067163

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxina-7/genética , Ataxina-7/metabolismo , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Neurônios/metabolismo , Neuroglia/metabolismo , Sirolimo
9.
Front Pharmacol ; 14: 1274248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027029

RESUMO

Autosomal recessive congenital ichthyoses (ARCI) are a skin pathology due to genetic causes characterized by a variable degree of desquamation, accompanied by erythema. The degree of symptoms is variable, different altered genes are involved, and the symptoms drastically affect patients' quality of life. Topical treatments are a first-choice strategy due to their ease of application and cost; however, enteral administration of retinoids offers greater efficacy, although with certain limitations. Despite the treatment alternatives, ARCI will persist throughout life, disabling people. Therefore, the search for new treatments always remains necessary. Especially repositioning drugs could be a short-term alternative to new affordable treatments for patients. Taking advantage of extensive knowledge of known drugs or biologics could ensure more accessible and possibly lower-cost treatments. This review briefly and concisely addresses possible repositioning strategies with drugs and biologics for ichthyosis.

10.
J Biol Eng ; 17(1): 64, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845737

RESUMO

Hydrogels are three-dimensional structures with specific features that render them useful for biomedical applications, such as tissue engineering scaffolds, drug delivery systems, and wound dressings. In recent years, there has been a significant increase in the search for improved mechanical properties of hydrogels derived from natural products to extend their applications in various fields, and there are different methods to obtain strengthened hydrogels. Cationic guar gum has physicochemical properties that allow it to interact with other polymers and generate hydrogels. This study aimed to develop an ultra-stretchable and self-healing hydrogel, evaluating the influence of adding PolyOX [poly(ethylene oxide)] on the mechanical properties and the interaction with cationic guar gum for potential tissue engineering applications. We found that variations in PolyOX concentrations and pH changes influenced the mechanical properties of cationic guar gum hydrogels. After optimization experiments, we obtained a novel hydrogel, which was semi-crystalline, highly stretchable, and with an extensibility area of approximately 400 cm2, representing a 33-fold increase compared to the hydrogel before being extended. Moreover, the hydrogel presented a recovery of 96.8% after the self-healing process and a viscosity of 153,347 ± 4,662 cP. Therefore, this novel hydrogel exhibited optimal mechanical and chemical properties and could be suitable for a broad range of applications in different fields, such as tissue engineering, drug delivery, or food storage.

11.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834378

RESUMO

Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.


Assuntos
Disruptores Endócrinos , Melatonina , Masculino , Ratos , Animais , Melatonina/farmacologia , Vitaminas , Simulação de Acoplamento Molecular , Sêmen/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Reprodução , Receptores de Estrogênio , Vitamina A , Vitamina K , Testosterona/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química
12.
Cancer Cell Int ; 23(1): 180, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633886

RESUMO

Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.

13.
Pharmaceutics ; 15(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37514100

RESUMO

Wound healing is a complex process that involves restoring the structure of damaged tissues through four phases: hemostasis, inflammation, proliferation, and remodeling. Wound dressings are the most common treatment used to cover wounds, reduce infection risk and the loss of physiological fluids, and enhance wound healing. Despite there being several types of wound dressings based on different materials and fabricated through various techniques, polymeric films have been widely employed due to their biocompatibility and low immunogenicity. Furthermore, they are non-invasive, easy to apply, allow gas exchange, and can be transparent. Among different methods for designing polymeric films, solvent casting represents a reliable, preferable, and highly used technique due to its easygoing and relatively low-cost procedure compared to sophisticated methods such as spin coating, microfluidic spinning, or 3D printing. Therefore, this review focuses on the polymeric dressings obtained using this technique, emphasizing the critical manufacturing factors related to pharmaceuticals, specifically discussing the formulation variables necessary to create wound dressings that demonstrate effective performance.

14.
AAPS PharmSciTech ; 24(6): 158, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498473

RESUMO

Albendazole is a broad-spectrum anthelmintic drug used for parasitic infections. In addition, due to its mechanism of action, it has been studied as an anticancer agent. However, poor and highly variable bioavailability are limiting factors for its use in systemic illnesses. The present study aimed to develop two parenteral formulations of albendazole and to compare its pharmacokinetic profile with the conventional oral administration. Parenteral formulations were developed using two different approaches: a phosphonooxymethylated prodrug and cosolvents. For the albendazole prodrug, once synthetized, its solubility and hydrolysis with alkaline phosphatase were evaluated. A factorial design of experiments was used for the cosolvent formulation. Stability and hemolytic activity were assessed. A pharmacokinetic study was performed on New Zealand rabbits. Both formulations were administered intravenously, and the prodrug was also administered intramuscularly. Results were compared with those obtained after the oral administration of albendazole. A 20,000-fold and 6000-fold increase in albendazole solubility was found with the prodrug and cosolvent formulations, respectively. Both parenteral formulations displayed higher albendazole plasma concentrations for the first 2 h compared with oral administration, even when the oral dose was doubled. The absolute bioavailability of oral albendazole was 15.5% while for the intramuscular administration of the prodrug was 102.6%. Both parenteral formulations showed a significant decrease in the formation of albendazole sulfoxide (ANOVA p<0.05) and allowed greater exposure to albendazole. Albendazole cosolvent parenteral formulation could be a promising option in systemic illnesses considering its ease of preparation and superb pharmacokinetic performance.


Assuntos
Anti-Helmínticos , Antineoplásicos , Pró-Fármacos , Animais , Coelhos , Albendazol , Pró-Fármacos/farmacocinética , Disponibilidade Biológica , Administração Oral
15.
Int J Cosmet Sci ; 45(6): 699-724, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402111

RESUMO

The term biopolymer refers to materials obtained by chemically modifying natural biological substances or producing them through biotechnological processes. They are biodegradable, biocompatible and non-toxic. Due to these advantages, biopolymers have wide applications in conventional cosmetics and new trends and have emerged as essential ingredients that function as rheological modifiers, emulsifiers, film-formers, moisturizers, hydrators, antimicrobials and, more recently, materials with metabolic activity on skin. Developing approaches that exploit these features is a challenge for formulating skin, hair and oral care products and dermatological formulations. This article presents an overview of the use of the principal biopolymers used in cosmetic formulations and describes their sources, recently derived structures, novel applications and safety aspects of the use of these molecules.


Le terme biopolymère fait référence aux matériaux obtenus par modification chimique des substances biologiques naturelles ou ceux qui surviennent des processus biotechnologiques. Ils sont biodégradables, biocompatibles, et non-toxiques. Du à leur avantages, les biopolymères ont de larges applications dans les cosmétiques conventionnels ainsi que dans les nouvelles tendances, et se placent comme des ingrédients essentiels qui peut être utilise comme modificateurs rhéologiques, émulsifiants, producteurs de films, humectants, hydratants, antimicrobiens, et, plus récemment, comme matériaux avec activité métabolique sur la peau. Le développement d'approches compte tenu de ces caractéristiques constitue un défi pour la création de produits de soins capillaires, dermatologiques et buccodentaires. Cet article présente une vision sur l'utilisation des principaux biopolymères dans les produits cosmétiques, et décrit leurs sources, leur structures dérivées, les nouvelles applications, ainsi que les aspects de sécurité lies à leur utilisation comme molécules cosmétiques.


Assuntos
Cosméticos , Biopolímeros/química , Emulsificantes
16.
Healthcare (Basel) ; 11(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37510511

RESUMO

Lamellar ichthyosis (LI) is a genodermatosis that injures the structure and function of the skin, affecting the appearance and self-esteem of patients, which may seriously impair their mental health and quality of life. In the present study, we determined anxiety, depression, and suicidal risk levels in patients with LI through the Beck anxiety and depression inventories (BAI and DBI-II, respectively) and the SAD PERSONS scale (SPS). We observed that anxiety, depression, and suicidal ideation were strongly associated with the LI (Cramér's V = 0.429, 0.594, and 0.462, respectively). Furthermore, patients with LI showed a significant increase in the scores of anxiety, depression, and suicidal risk (p = 0.011, <0.001, and 0.001, respectively) compared to individuals without the disease. Additionally, the suicide risk increased even more in patients who presented comorbidity of anxiety and depression than in patients who presented only anxiety or depression (p = 0.02). Similarly, the increase in the BAI scores correlated with the score observed on the SPS. Our results indicate that patients with LI have higher levels of anxiety and depression compared to individuals without the disease, which could be associated with suicidal risk. Therefore, the collaborative involvement of skin and mental health professionals is necessary to manage patients with LI appropriately. We believe that psychiatric studies and individual evaluations must be performed in LI patients to determine a treatment that, in addition to reducing skin symptoms, focuses on reducing the levels of depression and anxiety and improving the quality of life to reduce the risk of suicide.

17.
Toxics ; 11(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37505591

RESUMO

This study investigated whether the coadministration of vitamin E (VitE) diminishes the harmful effects provoked by plasticizer bisphenol S (BPS) in the serum metabolites related to hepatic and renal metabolism, as well as the endocrine pancreatic function in diabetic male Wistar rats. Rats were divided into five groups (n = 5-6); the first group was healthy rats (Ctrl group). The other four groups were diabetic rats induced with 45 mg/kg bw of streptozotocin: Ctrl-D (diabetic control); VitE-D (100 mg/kg bw/d of VitE); BPS-D (100 mg/kg bw/d of BPS); The animals from the VitE + BPS-D group were administered 100 mg/kg bw/d of VitE + 100 mg/kg bw/d of BPS. All compounds were administered orally for 30 days. Body weight, biochemical assays, urinalysis, glucose tolerance test, pancreas histopathology, proximate chemical analysis in feces, and the activity of antioxidants in rat serum were assessed. The coadministration of VitE + BPS produced weight losses, increases in 14 serum analytes, and degeneration in the pancreas. Therefore, the VitE + BPS coadministration did not have a protective effect versus the harmful impact of BPS or the diabetic metabolic state; on the contrary, it partially aggravated the damage produced by the BPS. VitE is likely to have an additive effect on the toxicity of BPS.

18.
Pharmaceutics ; 15(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376043

RESUMO

This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles' hydrophilicity, and trehalose enhances the nanoparticle's cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin's fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.

19.
Pharmaceutics ; 15(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376082

RESUMO

A healing material must have desirable characteristics such as maintaining a physiological environment, protective barrier-forming abilities, exudate absorption, easy handling, and non-toxicity. Laponite is a synthetic clay with properties such as swelling, physical crosslinking, rheological stability, and drug entrapment, making it an interesting alternative for developing new dressings. This study evaluated its performance in lecithin/gelatin composites (LGL) as well as with the addition of maltodextrin/sodium ascorbate mixture (LGL MAS). These materials were applied as nanoparticles, dispersed, and prepared by using the gelatin desolvation method-eventually being turned into films via the solvent-casting method. Both types of composites were also studied as dispersions and films. Dynamic Light Scattering (DLS) and rheological techniques were used to characterize the dispersions, while the films' mechanical properties and drug release were determined. Laponite in an amount of 8.8 mg developed the optimal composites, reducing the particulate size and avoiding the agglomeration by its physical crosslinker and amphoteric properties. On the films, it enhanced the swelling and provided stability below 50 °C. Moreover, the study of drug release in maltodextrin and sodium ascorbate from LGL MAS was fitted to first-order and Korsmeyer-Peppas models, respectively. The aforementioned systems represent an interesting, innovative, and promising alternative in the field of healing materials.

20.
Front Pharmacol ; 14: 1206334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346293

RESUMO

Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA