Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(6): 2887-2893, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33559956

RESUMO

BACKGROUND: Aedes aegypti is a remarkably effective mosquito vector of epidemiologically important arboviral diseases including dengue fever, yellow fever and Zika. The present spread of resistance against pyrethroids, the primary insecticides used for mosquito control, in global populations of this species is of great concern. The voltage-gated sodium channel (VGSC) in the nervous system is the known target site of pyrethroids in insects. Past studies have revealed several amino-acid substitutions in this channel that confer pyrethroid resistance, which are known as knockdown resistance (kdr) mutations. RESULTS: This study investigated a laboratory colony of Ae. aegypti, MCNaeg, established from larvae collected in Rio de Janeiro, Brazil in 2016. The MCNaeg colony showed strong resistance against pyrethroids without laboratory selection. Of the two VGSC gene haplotypes present within this colony, one harbored three known kdr mutations, V410L, V1016I, and F1534C, and the other harbored only the known F1534C mutation. In latter haplotype, we also found novel amino-acid substations including V253F. Previous molecular modeling and electrophysiological studies suggest that this residue serves a pyrethroid-sensing site in the second receptor, PyR2. Our genetical analysis showed that the haplotype harboring V253F and F1534C is associated with equal or slightly stronger resistance than the other triple kdr haplotype to both Type I and Type II pyrethroids. CONCLUSION: The novel substitution V253F is potentially involved in pyrethroid resistance in Ae. aegypti. Further studies are needed to elucidate the role of this substitution in the pyrethroid susceptibility of VGSC. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Infecção por Zika virus , Zika virus , Aedes/genética , Animais , Brasil , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética
2.
Neurotoxicology ; 32(1): 123-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971131

RESUMO

Austin (AT) and its derivatives (dehydroaustin (DAT) and acetoxydehydroaustin (ADAT)) produced by Penicillium brasilianum MG-11 exhibit toxicity to insects, yet their targets are unknown. Here, we used whole-cell patch-clamp electrophysiology to investigate the action of AT family compounds on cockroach acetylcholine (ACh), γ-aminobutyric acid (GABA) and l-glutamate receptors expressed in the American cockroach (Periplaneta americana) neuron. U-tube application of AT or its derivatives did not induce any current amplitudes, suggesting that they did not act as agonist of these three receptors. In the second step of experiments, they were bath-applied for 1min before co-application with the corresponding ligand. We found that AT and its derivatives had no effect on GABA and l-glutamate-induced currents, whereas they significantly reduced ACh- and epibatidine-induced currents, showing that these compounds acted as selective antagonists of nicotinic acetylcholine receptors (nAChRs) expressed in the cockroach neuron. Of the compounds, DAT showed the highest blocking potency for nAChRs, differentially attenuating the peak and slowly desensitizing current amplitude of ACh-induced responses with pIC(50) (=-logIC(50) (M)) values of 6.11 and 5.91, respectively. DAT reduced the maximum normalized response to ACh without a significant shift in EC(50), suggesting that the blocking action is not competitive with ACh.


Assuntos
Antagonistas Nicotínicos/toxicidade , Penicillium , Periplaneta/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Terpenos/toxicidade , Animais , Baratas , Relação Dose-Resposta a Droga , Masculino , Antagonistas Nicotínicos/isolamento & purificação , Penicillium/isolamento & purificação , Periplaneta/fisiologia , Receptores Nicotínicos/fisiologia , Terpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA