Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 91(11): 891-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26272641

RESUMO

PURPOSE: To assess the effect of 950 MHz ultra-high-frequency electromagnetic radiation (UHF-EMR) on biomarkers of oxidative damage to DNA, proteins and lipids in the left cerebral cortex (LCC) and right cerebral cortex (RCC) of neonate and 6-day-old rats. MATERIALS AND METHODS: Twelve rats were equally divided into two groups as controls (CR) and exposed (ER), for each age (0 and 6 days). The LCC and RCC were examined in ER and CR after exposure. Radiation exposure lasted 30 min per day for up to 27 days (throughout pregnancy and 6 days postnatal). The specific absorption rate ranged from 1.32-1.14 W/kg. The damage to lipids, proteins and DNA was verified by thiobarbituric acid reactive substances, carbonylated proteins (CP) and comets, respectively. The concentration of glucose in the peripheral blood of the rats was measured by the Accu-Chek Active Kit due to increased CP in RCC. RESULTS: In neonates, no modification of the biomarkers tested was detected. On the other hand, there was an increase in the levels of CP in the RCC of the 6-day-old ER. Interestingly, the concentration of blood glucose was decreased in this group. CONCLUSIONS: Our results indicate that there is no genotoxicity and oxidative stress in neonates and 6 days rats. However, the RCC had the highest concentration of CP that do not seem to be a consequence of oxidative stress. This study is the first to demonstrate the use of UHF-EMR causes different damage responses to proteins in the LCC and RCC.


Assuntos
Envelhecimento/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos da radiação , Proteínas do Tecido Nervoso/metabolismo , Exposição à Radiação , Espécies Reativas de Oxigênio/metabolismo , Animais , Relação Dose-Resposta a Droga , Campos Eletromagnéticos , Feminino , Masculino , Micro-Ondas , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Doses de Radiação , Ratos
2.
Artigo em Inglês | MEDLINE | ID: mdl-17383940

RESUMO

Crocodilians and other diving vertebrates experience hypoperfusion and hypoxia of several internal organs during long dives. At the end of a dive, reperfusion of aerated blood may cause a physiologically relevant oxidative stress. In this study, we analyzed selected markers of oxidative stress in eight organs of normoxic Paraguayan caiman (Caiman yacare) captured in the Brazilian Pantanal wetlands during the winter of 2001 (six mature-adult males and eight young-adult males; AD-1 and YA-1 groups, respectively), and during the summer of 2002 (six young-adult males (YA-2 group), ten hatchlings and five embryos). Lipid peroxidation products determined by three different assays were generally highest in brain, liver and kidney (in comparison with all other organs), and lowest in white muscles from the tail and hind legs. Liver and kidney showed the highest levels of carbonyl protein, while brain showed low levels. Intermediate levels of oxidative stress markers were mostly found in the heart ventricles and lung. Differences in oxidative stress markers between AD-1 and YA-1 were organ-specific, showing no age-related correlation. However, most oxidative stress markers in YA-2 organs were either higher than (by 1.4- to 3.7-fold) or not significantly different from respective values in hatchlings organs. This pattern (hatchlings versus young-adults) was confirmed using correlation analysis of individual caiman size versus levels of oxidative damage markers in four organs. The higher level of oxidative stress markers in young-adults possibly relates to the fast growth rate (and thus, increased oxidative metabolic rate) of C. yacare in the first years of life. Differences in oxidative stress markers between YA-1 and YA-2 were also observed and were ascribed to seasonal changes in free radical metabolism. These results in normoxic C. yacare represent the first step towards understanding the age-related physiological oxidative stress of a diving reptile from a seasonally changing wetland environment.


Assuntos
Jacarés e Crocodilos/fisiologia , Biomarcadores/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo/fisiologia , Animais , Animais Recém-Nascidos/metabolismo , Animais Selvagens , Encéfalo/metabolismo , Embrião não Mamífero/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA