Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 100(2-1): 022109, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574678

RESUMO

We study an associating lattice gas (ALG) using Monte Carlo simulation on the triangular lattice and semianalytical solutions on Husimi lattices. In this model, the molecules have an orientational degree of freedom and the interactions depend on the relative orientations of nearest-neighbor molecules, mimicking the formation of hydrogen bonds. We focus on the transition between the high-density liquid (HDL) phase and the isotropic phase in the limit of full occupancy, corresponding to chemical potential µâ†’∞, which has not yet been studied systematically. Simulations yield a continuous phase transition at τ_{c}=k_{B}T_{c}/γ=0.4763(1) (where -γ is the bond energy) between the low-temperature HDL phase, with a nonvanishing mean orientation of the molecules, and the high-temperature isotropic phase. Results for critical exponents and the Binder cumulant indicate that the transition belongs to the three-state Potts model universality class, even though the ALG Hamiltonian does not have the full permutation symmetry of the Potts model. In contrast with simulation, the Husimi lattice analyses furnish a discontinuous phase transition, characterized by a discontinuity of the nematic order parameter. The transition temperatures (τ_{c}=0.51403 and 0.51207 for trees built with triangles and hexagons, respectively) are slightly higher than that found via simulation. Since the Husimi lattice studies show that the ALG phase diagram features a discontinuous isotropic-HDL line for finite µ, three possible scenarios arise for the triangular lattice. The first is that in the limit µâ†’∞ the first-order line ends in a critical point; the second is a change in the nature of the transition at some finite chemical potential; the third is that the entire line is one of continuous phase transitions. Results from other ALG models and the fact that mean-field approximations show a discontinuous phase transition for the three-state Potts model (known to possess a continuous transition) lends some weight to the third alternative.

2.
J Chem Phys ; 146(14): 144503, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411617

RESUMO

We perform an extensive computational study of binary mixtures of water and short-chain alcohols resorting to two-scale potential models to account for the singularities of hydrogen bonded liquids. Water molecules are represented by a well studied core softened potential which is known to qualitatively account for a large number of water's characteristic anomalies. Along the same lines, alcohol molecules are idealized by dimers in which the hydroxyl groups interact with each other and with water with a core softened potential as well. Interactions involving non-polar groups are all deemed purely repulsive. We find that the qualitative behavior of excess properties (excess volume, enthalpy, and constant pressure heat capacity) agrees with that found experimentally for alcohols such as t-butanol in water. Moreover, we observe that our simple solute under certain conditions acts as a "structure-maker," in the sense that the temperature of maximum density of the bulk water model increases as the solute is added, i.e., the anomalous behavior of the solvent is enhanced by the solute.

3.
J Chem Phys ; 145(14): 144501, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782509

RESUMO

A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26465479

RESUMO

The thermodynamic, dynamic, and structural behavior of a water-like system confined in a matrix is analyzed for increasing confining geometries. The liquid is modeled by a two-dimensional associating lattice gas model that exhibits density and diffusion anomalies, similar to the anomalies present in liquid water. The matrix is a triangular lattice in which fixed obstacles impose restrictions to the occupation of the particles. We show that obstacles shorten all lines, including the phase coexistence, the critical and the anomalous lines. The inclusion of a very dense matrix not only suppresses the anomalies but also the liquid-liquid critical point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA