Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0279200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36607974

RESUMO

The kelp forests of southern Patagonia have a large diversity of habitats, with remote islands, archipelagos, peninsulas, gulfs, channels, and fjords, which are comprised of a mixture of species with temperate and sub-Antarctic distributions, creating a unique ecosystem that is among the least impacted on Earth. We investigated the distribution, diversity, and abundance of marine macroinvertebrate assemblages from the kelp forests of southern Patagonia over a large spatial scale and examined the environmental drivers contributing to the observed patterns in assemblage composition. We analyzed data from 120 quantitative underwater transects (25 x 2 m) conducted within kelp forests in the southern Patagonian fjords in the Kawésqar National Reserve (KNR), the remote Cape Horn (CH) and Diego Ramírez (DR) archipelagos of southern Chile, and the Mitre Peninsula (MP) and Isla de los Estados (IE) in the southern tip of Argentina. We observed rich assemblages of macroinvertebrates among these kelp forests, with a total of 185 unique taxa from 10 phyla and 23 classes/infraorders across the five regions. The number of taxa per transect was highest at IE, followed by MP, CH, and KNR, with the lowest number recorded at DR. The trophic structure of the macroinvertebrate assemblages was explained mostly by wave exposure (28% of the variation), followed by salinity (12%) and the KNR region (11%). KNR was most distinct from the other regions with a greater abundance of deposit feeders, likely driven by low salinity along with high turbidity and nutrients from terrigenous sources and glacial melt. Our study provides the first broad-scale description of the benthic assemblages associated with kelp forests in this vast and little-studied region and helps to establish baselines for an area that is currently lightly influenced by local anthropogenic factors and less impacted by climate change compared with other kelp forests globally.


Assuntos
Ecossistema , Kelp , Florestas , Chile , Argentina
2.
PLoS One ; 17(7): e0271731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901124

RESUMO

Osa Peninsula in remote southwest Costa Rica harbors 2.5% of global terrestrial biodiversity in only 1,200 km2 and has the largest remaining tract of Pacific lowland wet forest in Mesoamerica. However, little is known about the marine ecosystems of this diverse region. Much of the coastline consists of soft sediment exposed to strong wave action. Three major hard bottom habitat types define this region, including: 1) coral reefs around Isla del Caño Biological Reserve, a no-take marine protected area (MPA) of 52 km2, 2) coastal rocky reefs and islets along the peninsula, including Corcovado National Park, and 3) submerged pinnacles just outside the Isla del Caño MPA. Average coral cover at Isla del Caño was 21%, composed primarily of Porites lobata and Pocillopora elegans. In contrast, coastal rocky reefs were dominated by turf algae (39.8%) and macroalgae (20.7%) with low coral cover (1.1%). Submerged pinnacles were dominated by crustose coralline algae (33.3%) and erect coralline algae (25.7%). Fish assemblage characteristics (species richness, abundance, biomass) were significantly higher at the pinnacles compared to the other habitats and was dominated by schooling species such as Haemulon steindachneri, and the herbivores Kyphosus ocyurus, and Acanthurus xanthopterus. Top predators, primarily Triaenodon obesus, Caranx sexfasciatus, and Lutjanus argentimaculatus, were also most abundant at these pinnacles and accounted for the largest differences in fish trophic structure among habitats. Despite Isla del Caño being fully protected from fishing, biomass was similar to fished areas along the coast and lower than the adjacent submerged pinnacles outside the reserve. Similarly, Corcovado National Park includes 20.3 km2 of no-take MPAs; however, there is limited enforcement, and we noted several instances of fishing within the park. The unique configuration of healthy offshore coral reefs and pinnacles connected to coastal habitats provides corridors for many species including large predators such as sharks and other marine megafauna, which warrants additional protection.


Assuntos
Antozoários , Tubarões , Animais , Biodiversidade , Conservação dos Recursos Naturais , Recifes de Corais , Costa Rica , Ecossistema , Peixes , Oceanos e Mares , Floresta Úmida
3.
J Fish Biol ; 100(3): 835-842, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931706

RESUMO

We report new records of the fisheries-harvested subtropical greater amberjack Seriola dumerili for the south-east Pacific Ocean. Despite local fishers' asserting that three Seriola morphotypes exist in the region, only one species (the yellowtail amberjack Seriola lalandi) was previously scientifically recorded for Rapa Nui (also known as Easter Island). Whilst we present the first "scientific record", S. dumerili, traditional ecological knowledge suggests that this is likely a pre-existing (albeit transient) species of the Rapa Nui ecoregion. Establishing the existing/historic distributional limits of commercially and ecologically valuable species is key for observing climate-driven distribution shifts, and the inclusion of traditional ecological knowledge is particularly important in areas with relatively lower scientific effort.


Assuntos
Perciformes , Animais , Regiões Antárticas , Pesqueiros , Peixes , Polinésia
4.
PLoS One ; 16(9): e0257662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34543325

RESUMO

Knowledge of the ecology of the fish fauna associated with kelp (primarily Macrocystis pyrifera) forests in Southern Patagonia is scarce, especially in how abiotic and biotic variables influence their structure, diversity, and distribution. This information is important for the management and conservation of this unique ecosystem, which has minimal anthropogenic impacts at present. We analyzed data from 122 quantitative underwater transects conducted within kelp forests at 61 stations from Chile's southern Patagonian fjords to the Cape Horn and Diego Ramirez archipelagos and the southern tip of Argentina, including the Mitre Peninsula and Isla de los Estados. In total, 25 fish species belonging to 13 families were observed. Multivariate analysis indicated that there are significant differences in fish assemblage structure among locations and wave exposures, which was driven primarily by Patagonotothen sima and Paranotothenia magellanica, which occurred on exposed and semi-exposed stations. P. cornucola was mainly distributed across sheltered stations of the Kawésqar National Park. Temperature, salinity, depth, and kelp density influenced fish assemblage structure, with the highest diversity in areas with the lowest temperature and greater depth at Isla de los Estados. In contrast, species richness, diversity, abundance, and biomass were all lower in areas with high density of the understory kelp Lessonia spp., which might be driven by the absence of P. tessellata, P. squamiceps and P. cornucola, the most important species in terms of occurrence, abundance, and biomass. Our study provides the first broad-scale description of the fish assemblages associated with kelp forests along the southern cone of South America based on non-invasive visual transects, improving our knowledge of the distribution of fish assemblages across several environmental conditions in this vast and little-studied area.


Assuntos
Ecossistema , Kelp , Biodiversidade , Florestas , Macrocystis
5.
PLoS One ; 16(6): e0253213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191822

RESUMO

The Salas y Gómez and Nazca ridges are underwater mountain chains that stretch across 2,900 km in the southeastern Pacific and are recognized for their high biodiversity value and unique ecological characteristics. Explorations of deep-water ecosystems have been limited in this region, and elsewhere globally. To characterize community composition of mesophotic and deep-sea demersal fauna at seamounts in the region, we conducted expeditions to Rapa Nui (RN) and Salas y Gómez (SyG) islands in 2011 and Desventuradas Islands in 2013. Remote autonomous baited-cameras were used to conduct stationary video surveys between 150-1,850 m at RN/SyG (N = 20) and 75-2,363 m at Desventuradas (N = 27). Individual organisms were identified to the lowest possible taxonomic level and relative abundance was quantified with the maximum number of individuals per frame. Deployments were attributed with associated environmental variables (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate, chlorophyll-a, seamount age, and bathymetric position index [BPI]). We identified 55 unique invertebrate taxa and 66 unique fish taxa. Faunal community structure was highly dissimilar between and within subregions both for invertebrate (p < 0.001) and fish taxa (p = 0.022). For fishes, dogfish sharks (Squalidae) accounted for the greatest dissimilarity between subregions (18.27%), with mean abundances of 2.26 ± 2.49 at Desventuradas, an order of magnitude greater than at RN/SyG (0.21 ± 0.54). Depth, seamount age, broad-scale BPI, and nitrate explained most of the variation in both invertebrate (R2 = 0.475) and fish (R2 = 0.419) assemblages. Slightly more than half the deployments at Desventuradas (N = 14) recorded vulnerable marine ecosystem taxa such as corals and sponges. Our study supports mounting evidence that the Salas y Gómez and Nazca ridges are areas of high biodiversity and high conservation value. While Chile and Peru have recently established or proposed marine protected areas in this region, the majority of these ridges lie outside of national jurisdictions and are under threat from overfishing, plastic pollution, climate change, and potential deep-sea mining. Given its intrinsic value, this region should be comprehensively protected using the best available conservation measures to ensure that the Salas y Gómez and Nazca ridges remain a globally unique biodiversity hotspot.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Peixes/fisiologia , Invertebrados/fisiologia , Distribuição Animal , Animais , Chile , Monitorização de Parâmetros Ecológicos/métodos , Ilhas , Oceano Pacífico , Peru , Gravação em Vídeo
6.
PLoS One ; 16(4): e0249413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33852615

RESUMO

The newly created Kawésqar National Park (KNP) and National Reserve (KNR) in southern Chile consists of diverse terrestrial and marine habitats, which includes the southern terminus of the Andes, the Southern Patagonia Ice Fields, sub-Antarctic rainforests, glaciers, fjords, lakes, wetlands, valleys, channels, and islands. The marine environment is influenced by wide ranging hydrological factors such as glacier melt, large terrigenous inputs, high precipitation, strong currents, and open ocean water masses. Owing to the remoteness, rugged terrain, and harsh environmental conditions, little is known about this vast region, particularly the marine realm. To this end, we conducted an integrated ecological assessment using SCUBA and remote cameras down to 600 m to examine this unique and largely unexplored ecosystem. Kelp forests (primarily Macrocystis pyrifera) dominate the nearshore ecosystem and provide habitat for myriad benthic organisms. In the fjords, salinity was low and both turbidity and nutrients from terrigenous sources were high, with benthic communities dominated by active suspension feeders (e.g., Bivalvia, Ascidiacea, and Bryozoa). Areas closer to the Pacific Ocean showed more oceanic conditions with higher salinity and lower turbidity, with benthic communities experiencing more open benthic physical space in which predators (e.g., Malacostraca and Asteroidea) and herbivorous browsers (e.g., Echinoidea and Gastropoda) were more conspicuous components of the community compared to the inner fjords. Hagfish (Myxine sp.) was the most abundant and frequently occurring fish taxa observed on deep-sea cameras (80% of deployments), along with several taxa of sharks (e.g., Squaliformes, Etmopteridae, Somniosidae, Scyliorhinidae), which collectively were also observed on 80% of deep-sea camera deployments. The kelp forests, deep fjords, and other nearshore habitats of the KNR represent a unique ecosystem with minimal human impacts at present. The KNR is part of the ancestral territory of the indigenous Kawésqar people and their traditional knowledge, including the importance of the land-sea connection in structuring the marine communities of this region, is strongly supported by our scientific findings.


Assuntos
Organismos Aquáticos , Biodiversidade , Parques Recreativos/estatística & dados numéricos , Chile , Camada de Gelo , Oceano Pacífico
7.
PLoS One ; 15(3): e0229259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160219

RESUMO

The kelp forests of southern South America are some of the least disturbed on the planet. The remoteness of this region has, until recently, spared it from many of the direct anthropogenic stressors that have negatively affected these ecosystems elsewhere. Re-surveys of 11 locations at the easternmost extent of Tierra del Fuego originally conducted in 1973 showed no significant differences in the densities of adult and juvenile Macrocystis pyrifera kelp or kelp holdfast diameter between the two survey periods. Additionally, sea urchin assemblage structure at the same sites were not significantly different between the two time periods, with the dominant species Loxechinus albus accounting for 66.3% of total sea urchin abundance in 2018 and 61.1% in 1973. Time series of Landsat imagery of the region from 1998 to 2018 showed no long-term trends in kelp canopy over the past 20 years. However, ~ 4-year oscillations in canopy fraction were observed and were strongly and negatively correlated with the NOAA Multivariate ENSO index and sea surface temperature. More extensive surveying in 2018 showed significant differences in benthic community structure between exposed and sheltered locations. Fish species endemic to the Magellanic Province accounted for 73% of all nearshore species observed and from 98-100% of the numerical abundance enumerated at sites. Fish assemblage structure varied significantly among locations and wave exposures. The recent creation of the Yaganes Marine Park is an important step in protecting this unique and biologically rich region; however, the nearshore waters of the region are currently not included in this protection. There is a general lack of information on changes in kelp forests over long time periods, making a global assessment difficult. A complete picture of how these ecosystems are responding to human pressures must also include remote locations and locations with little to no impact.


Assuntos
Mudança Climática , Peixes/fisiologia , Cadeia Alimentar , Macrocystis/fisiologia , Oceanos e Mares , Ouriços-do-Mar/fisiologia , Animais , América do Sul , Temperatura
9.
PLoS One ; 13(1): e0189930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29364902

RESUMO

The vast and complex coast of the Magellan Region of extreme southern Chile possesses a diversity of habitats including fjords, deep channels, and extensive kelp forests, with a unique mix of temperate and sub-Antarctic species. The Cape Horn and Diego Ramírez archipelagos are the most southerly locations in the Americas, with the southernmost kelp forests, and some of the least explored places on earth. The giant kelp Macrocystis pyrifera plays a key role in structuring the ecological communities of the entire region, with the large brown seaweed Lessonia spp. forming dense understories. Kelp densities were highest around Cape Horn, followed by Diego Ramírez, and lowest within the fjord region of Francisco Coloane Marine Park (mean canopy densities of 2.51 kg m-2, 2.29 kg m-2, and 2.14 kg m-2, respectively). There were clear differences in marine communities among these sub-regions, with the lowest diversity in the fjords. We observed 18 species of nearshore fishes, with average species richness nearly 50% higher at Diego Ramírez compared with Cape Horn and Francisco Coloane. The number of individual fishes was nearly 10 times higher at Diego Ramírez and 4 times higher at Cape Horn compared with the fjords. Dropcam surveys of mesophotic depths (53-105 m) identified 30 taxa from 25 families, 15 classes, and 7 phyla. While much of these deeper habitats consisted of soft sediment and cobble, in rocky habitats, echinoderms, mollusks, bryozoans, and sponges were common. The southern hagfish (Myxine australis) was the most frequently encountered of the deep-sea fishes (50% of deployments), and while the Fueguian sprat (Sprattus fuegensis) was the most abundant fish species, its distribution was patchy. The Cape Horn and Diego Ramírez archipelagos represent some of the last intact sub-Antarctic ecosystems remaining and a recently declared large protected area will help ensure the health of this unique region.


Assuntos
Biodiversidade , Biologia Marinha , Animais , Chile , Ecossistema , Peixes , Kelp
10.
PLoS One ; 11(10): e0165167, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27780213

RESUMO

The regionally endemic Galapagos Grouper, locally known as bacalao, is one of the most highly prized finfish species within the Galapagos Marine Reserve (GMR). Concerns of overfishing, coupled with a lack of fishing regulations aimed at this species raises concerns about the current population health. We assessed changes in population health over a 30-year period using three simple indicators: (1) percentage of fish below reproductive size (Lm); (2) percentage of fish within the optimum length interval (Lopt); and (3) percentage of mega-spawners in the catch. Over the assessed period, none of the indicators reached values associated with healthy populations, with all indicators declining over time. Furthermore, the most recent landings data show that the vast majority of the bacalao caught (95.7%,) were below Lm, the number of fish within the Lopt interval was extremely low (4.7%), and there were virtually no mega-spawners (0.2%). Bacalao fully recruit to the fishery 15 cm below the size at which 50% of the population matures. The Spawning Potential Ratio is currently 5% of potential unfished fecundity, strongly suggesting severe overfishing. Our results suggest the need for bacalao-specific management regulations that should include minimum (65 cm TL) and maximum (78 cm TL) landing sizes, slot limits (64-78 cm TL), as well as a closed season during spawning from October to January. It is recognized that these regulations are harsh and will certainly have negative impacts on the livelihoods of fishers in the short term, however, continued inaction will likely result in a collapse of this economically and culturally valuable species. Alternative sources of income should be developed in parallel with the establishment of fishing regulations to limit the socio-economic disruption to the fishing community during the transition to a more sustainable management regime.


Assuntos
Pesqueiros/economia , Perciformes/fisiologia , Animais , Conservação dos Recursos Naturais , Ecossistema , Equador , Controle da População , Reprodução , Estações do Ano , Análise Espaço-Temporal
11.
PeerJ ; 4: e1911, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190701

RESUMO

Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote and/or well-protected areas. The islands of Darwin and Wolf in the far north of the Galapagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf over two consecutive years using stereo-video surveys, which reveal the largest reef fish biomass ever reported (17.5 t [Formula: see text] on average), consisting largely of sharks. Despite this, the abundance of reef fishes around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they were not fully protected from fishing until March 2016. Given the ecological value and the economic importance of Darwin and Wolf for the dive tourism industry, the current protection should ensure the long-term conservation of this hotspot of unique global value.

12.
PLoS One ; 11(1): e0145059, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26734732

RESUMO

The Juan Fernández and Desventuradas islands are among the few oceanic islands belonging to Chile. They possess a unique mix of tropical, subtropical, and temperate marine species, and although close to continental South America, elements of the biota have greater affinities with the central and south Pacific owing to the Humboldt Current, which creates a strong biogeographic barrier between these islands and the continent. The Juan Fernández Archipelago has ~700 people, with the major industry being the fishery for the endemic lobster, Jasus frontalis. The Desventuradas Islands are uninhabited except for a small Chilean military garrison on San Félix Island. We compared the marine biodiversity of these islands across multiple taxonomic groups. At San Ambrosio Island (SA), in Desventuradas, the laminarian kelp (Eisenia cokeri), which is limited to Desventuradas in Chile, accounted for >50% of the benthic cover at wave exposed areas, while more sheltered sites were dominated by sea urchin barrens. The benthos at Robinson Crusoe Island (RC), in the Juan Fernández Archipelago, comprised a diverse mix of macroalgae and invertebrates, a number of which are endemic to the region. The biomass of commercially targeted fishes was >2 times higher in remote sites around RC compared to sheltered locations closest to port, and overall biomass was 35% higher around SA compared to RC, likely reflecting fishing effects around RC. The number of endemic fish species was extremely high at both islands, with 87.5% of the species surveyed at RC and 72% at SA consisting of regional endemics. Remarkably, endemics accounted for 99% of the numerical abundance of fishes surveyed at RC and 96% at SA, which is the highest assemblage-level endemism known for any individual marine ecosystem on earth. Our results highlight the uniqueness and global significance of these biodiversity hotspots exposed to very different fishing pressures.


Assuntos
Biodiversidade , Peixes/fisiologia , Análise de Variância , Animais , Biomassa , Chile , Peixes/crescimento & desenvolvimento , Invertebrados/fisiologia , Ilhas , Especificidade da Espécie
13.
PLoS One ; 9(5): e96028, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24797815

RESUMO

Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40-64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.


Assuntos
Migração Animal/fisiologia , Recifes de Corais , Peixes/fisiologia , Animais , Porto Rico
14.
Rev. biol. trop ; Rev. biol. trop;60(supl.3): 321-338, nov. 2012. ilus, graf, mapas, tab
Artigo em Inglês | LILACS, SaludCR | ID: lil-672099

RESUMO

Fishes at Isla del Coco National Park, Costa Rica, were surveyed as part of a larger scientific expedition to the area in September 2009. The average total biomass of nearshore fishes was 7.8 tonnes per ha, among the largest observed in the tropics, with apex predators such as sharks, jacks, and groupers accounting for nearly 40% of the total biomass. The abundance of reef and pelagic sharks, particularly large aggregations of threatened species such as the scalloped hammerhead shark (up to 42 hammerheads ha-1) and large schools of jacks and snappers show the capacity for high biomass in unfished ecosystems in the Eastern Tropical Pacific. However, the abundance of hammerhead and reef whitetip sharks appears to have been declining since the late 1990s, and likely causes may include increasing fishing pressure on sharks in the region and illegal fishing inside the Park. One Galapagos shark tagged on September 20, 2009 in the Isla del Coco National Park moved 255km southeast towards Malpelo Island in Colombia, when it stopped transmitting. These results contribute to the evidence that sharks conduct large-scale movements between marine protected areas (Isla del Coco, Malpelo, Galápagos) in the Eastern tropical Pacific and emphasize the need for regional-scale management. More than half of the species and 90% of the individuals observed were endemic to the tropical eastern Pacific. These high biomass and endemicity values highlight the uniqueness of the fish assemblage at Isla del Coco and its importance as a global biodiversity hotspot.


La biomasa promedio de peces costeros en el Parque Nacional Isla del Coco en septiembre de 2010 fue de 7,8 toneladas por hectárea, entre las más elevadas halladas jamás en zonas tropicales. Los grandes depredadores representaron el 40% de la biomasa total. La abundancia de tiburones costeros y pelágicos, particularmente las enormes agregaciones de tiburón martillo (hasta 42 individuos por hectárea) y los extensos bancos de carángidos y lutjánidos, muestran la capacidad que tienen los ecosistemas marinos no pescados para albergar elevadas biomasas de peces, y hacen de la Isla del Coco un lugar único en el mundo. No obstante, la abundancia de tiburones parece estar decreciendo desde 1999, probablemente a causa de la creciente presión pesquera en la región y la pesca ilegal en el interior del Parque. Un tiburón de Galápagos marcado se dirigió 255km en dirección a la Isla de Malpelo, Colombia. Estos resultados sugieren que los tiburones realizan importantes movimientos entre áreas marinas protegidas (Isla del Coco, Malpelo, Galápagos) en el Pacífico Tropical Oriental y remarcan la necesidad de una gestión regional de estos animales. Más del 50% de las especies y el 90% de individuos observados en los contajes eran endémicos del Pacífico Tropical Oriental.


Assuntos
Comportamento Predatório/classificação , Tubarões/classificação , Biodiversidade , Áreas Marinhas Protegidas/análise , Pesqueiros , Costa Rica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA