Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
3.
J Steroid Biochem Mol Biol ; 200: 105627, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32070756

RESUMO

The South American plains vizcacha, Lagostomus maximus, is the only mammal described so far that shows expression of estrogen receptors (ERs) and progesterone receptors (PRs) in gonadotropin-releasing hormone (GnRH) neurons. This animal therefore constitutes an exceptional model for the study of the effect of steroid hormones on the modulation of the hypothalamic-pituitary-ovarian (HPO) axis. By using both in vivo and ex vivo approaches, we have found that pharmacological doses of progesterone (P4) and estradiol (E2) produced an inhibition in the expression of hypothalamic GnRH, while physiological doses produced a differential effect on the pulsatile release frequency or genomic expression of GnRH. Our ex vivo experiment indicates that a short-term effect of E2 modulates the frequency of GnRH release pattern that would be associated with membrane ERs. On the other hand, our in vivo approach suggests that a long-term effect of E2, acting through the classical nuclear ERs-PRs pathway, would produce the modification of GnRH mRNA expression during the GnRH pre-ovulatory surge. Particularly, P4 induced a rise in GnRH mRNA expression and protein release with a decrease in its release frequency. These results suggest different levels of action of steroid hormones on GnRH modulation. We conclude that the fine action of E2 and P4 constitute the key factor to enable the hypothalamic activity during the pregnancy of this mammal.


Assuntos
Estradiol/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Progesterona/farmacologia , Animais , Estradiol/sangue , Feminino , Hormônio Liberador de Gonadotropina/genética , Sistema Hipotálamo-Hipofisário , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Ovariectomia , Ovário , Progesterona/sangue , Roedores
4.
PLoS One ; 13(9): e0203268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192809

RESUMO

Emerging evidence has shown that oocytes from diabetic ovaries exhibit delayed maturation, mitochondrial dysfunction and meiotic defects, which are related increased apoptosis. The main objective of the present study was to analyze the apoptosis pathways activated during follicular loss at multiple time points in a diabetic mouse model. Twenty BALB/c mice were used in this study, and diabetes mellitus was induced by streptozotocin injection. Three diabetic and two control animals were sacrificed on days 15, 20, 70 and 80 posttreatment. The ovaries were then removed; one was used for follicular counting, TUNEL, immunohistochemistry and immunofluorescence, while the other was used for Western blot analysis. The proteins studied were BAX, BCL2, t-BID, FAS, FASL, active caspase 8, active caspase 9 and active caspase 3. Follicular apoptosis decreased over time, with the highest values observed at 15 days posttreatment. Granulosa cells were positive for active caspase 3, which showed constant expression levels at all time points. FAS, FASL, t-BID and active caspase 8 showed strong cytoplasmic immunostaining in the oocytes and granulosa cells of the diabetic mice, with significant increases observed at 15, 20 and 70 days posttreatment. BAX expression was slightly higher in the diabetic mouse ovaries than in the control ovaries at 15, 20 and 70 days posttreatment, whereas the highest active caspase 9 expression was at observed 20 days posttreatment. Low BCL2 protein levels were detected in the diabetic mouse ovaries at all time points. This study describes for the first time the behavior of apoptosis-related proteins in the diabetic mouse ovary and shows not only that the FAS/FASL pathway contributes to follicular loss but also that antral follicles are the most affected.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ovário/metabolismo , Animais , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Diabetes Mellitus Experimental/patologia , Proteína Ligante Fas/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Ovário/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo , Receptor fas/metabolismo
5.
J Mol Histol ; 48(3): 259-273, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28317066

RESUMO

Gonadotropin-releasing hormone (GnRH) is the key regulator of the hypothalamic-pituitary-gonadal axis. Estradiol (E2) affects GnRH synthesis and delivery. Hypothalamic estrogen receptors (ER) modulate GnRH expression acting as transcription factors. The South American plains vizcacha, Lagostomus maximus, is able to ovulate up to 800 oocytes per reproductive cycle, and shows continuous folliculogenesis with pre-ovulatory follicle formation and an ovulatory event at mid-gestation. The aim of this work was to analyze the hypothalamic expression of ER in the vizcacha at different gestational time-points, and its relationship with GnRH expression, serum luteinizing hormone (LH) and E2. The hormonal pattern of mid-gestating vizcachas was comparable to ovulating-females with significant increases in GnRH, LH and E2. Hypothalamic protein and mRNA expression of ERα varied during pregnancy with a significant increase at mid-gestation whereas ERß mRNA expression did not show significant variations. Hypothalamic immunolocalization of ERα was observed in neurons of the diagonal band of Brocca, medial preoptic area (mPOA), periventricular, suprachiasmatic, supraoptic (SON), ventromedial, and arcuate nuclei, and medial eminence, with a similar distribution throughout gestation. In addition, all GnRH neurons of the mPOA and SON showed ERα expression with no differences across the reproductive status. The correlation between GnRH and ERα at mid-gestation, and their co-localization in the hypothalamic neurons of the vizcacha, provides novel information compared with other mammals suggesting a direct action of estrogen as part of a differential reproductive strategy to assure GnRH synthesis during pregnancy.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/citologia , Neurônios/química , Animais , Estradiol/metabolismo , Feminino , Idade Gestacional , Hormônio Luteinizante/sangue , Gravidez , Roedores
6.
J Ovarian Res ; 8: 66, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446766

RESUMO

BACKGROUND: Endometriosis is a gynaecological disorder that affects 6-10 % of female population. It is characterized by the presence of endometrial tissue outside the uterus, most often in the pelvic peritoneum or ovaries. Recent studies have indicated that mesenchymal endometrial stem cells might get involved in endometriosis progression. Although germ line stem cells have been proved to exist in the ovary, their involvement in ovarian endometriosis has not been investigated. In this preliminary report we aimed to identify germinal stem cell markers in ovarian endometriosis. FINDINGS: Ten paraffin-embedded ovarian endometriosis samples were screened for germ cell-specific proteins DDX4 (VASA) and IFITM3, and its relation with stem cell marker OCT4, proliferation marker PCNA and estrogen receptor alpha (ESR1), by immunohistochemistry, immunofluorescence and PCR. DDX4 and IFITM3 proteins were expressed in isolated cells and clusters of cells in the cortical region of ovarian endometriotic cysts. DDX4 and IFITM3 co-localized in cells from endometriotic stroma, and DDX4/IFITM3-expressing cells were positive for ESR1, OCT4 and PCNA. No cells expressing neither DDX4 nor IFITM3 were detected in normal endometrial tissue. CONCLUSION: The identification of germ cell-specific proteins DDX4 and IFITM3 provides the first evidence of ovarian-sourced cells in ovarian endometriotic lesions and opens up new directions towards understanding the still confusing pathogenesis of endometriosis.


Assuntos
RNA Helicases DEAD-box/metabolismo , Endometriose/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adolescente , Adulto , Biomarcadores Tumorais/metabolismo , Feminino , Células Germinativas/química , Humanos , Pessoa de Meia-Idade , Células-Tronco/química , Adulto Jovem
7.
Biol Reprod ; 89(5): 115, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24089203

RESUMO

In mammals, elevated levels of progesterone (P4) throughout gestation maintain a negative feedback over the hypothalamic-hypophyseal-gonadal (H-H-G) axis, avoiding preovulatory follicular growth and preventing ovulation. Recent studies showed that in the South American plains vizcacha (Lagostomus maximus) folliculogenesis progresses to preovulatory stages during gestation, and an ovulatory process seems to occur at midgestation. The aim of this work was to analyze hypothalamic gonadotropin-releasing hormone (GnRH) and P4 receptors (PR) expression and luteinizing hormone (LH) secretion and correlate these with the functional state of the ovary in nonovulating and ovulating females and gestating females with special emphasis in the supposedly ovulating females at midgestation. We investigated P4 and LH serum levels as well as the distribution, localization, and expression of PR and GnRH in the hypothalamus of L. maximus at different time points during gestation and in nongestating, ovulating and nonovulating, females. A significant increment in GnRH, P4, and LH was detected in midpregnant vizcachas with respect to early-pregnant and to ovulating females. PR was also significantly increased in midpregnant animals. PR was detected in neurons of the preoptic and hypothalamic areas. Coexistence of both PR and GnRH in neurons of medial preoptic area and supraoptic nucleus was detected. Midpregnant animals showed increased number of PR immunoreactive cells at median eminence, localized adjacently to GnRH immunoreactive fibers. High expression of hypothalamic GnRH and PR, despite an increased level of P4, was correlated with the presence of antral, preovulatory follicles, and luteinized unruptured follicles at midgestation that suggest a possible role of the H-H-G axis in the modulation of ovulation during gestation in L. maximus.


Assuntos
Hormônio Liberador de Gonadotropina/genética , Hipotálamo/metabolismo , Prenhez , Receptores de Progesterona/genética , Roedores/genética , Animais , Feminino , Idade Gestacional , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Ovulação/fisiologia , Gravidez , Prenhez/genética , Prenhez/metabolismo , Receptores de Progesterona/metabolismo , Roedores/metabolismo , América do Sul
8.
J Mol Histol ; 44(3): 299-310, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529757

RESUMO

We studied for the first time the mammary gland morphogenesis and its hormonal modulation by immunolocalizing estradiol, progesterone and prolactin receptors (ER, PR and PRLR) in adult females of Lagostomus maximus, a caviomorph rodent which shows a pseudo-ovulatory process at mid-gestation. Mammary ductal system of non-pregnant females lacks expression of both ERα and ERß. Yet throughout pregnancy, ERα and ERß levels increase as well as the expression of PR. These increments are concomitant with ductal branching and alveolar differentiation. Even though mammary gland morphology is quite similar to that described for other rodents, alveolar proliferation and differentiation are accelerated towards the second half of pregnancy, once pseudo-ovulation had occurred. Moreover, this exponential growth correlates with an increment of both progesterone and estradiol serum-induced pseudo-ovulation. As expected, PR and PRLR are strongly expressed in the alveolar epithelium during pregnancy and lactation. Strikingly, PRLR is also present in ductal epithelia of cycling glands suggesting that prolactin function may not be restricted to its trophic effect on mammary glands of pregnant and lactating females, but it also regulates other physiological processes in mammary glands of non-pregnant animals. In conclusion, this report suggests that pseudo-ovulation at mid-gestation may be associated to L. maximus mammary gland growth and differentiation. The rise in P and E2-induced pseudo-ovulation as well as the increased expression of their receptors, all events that correlate with the development of a more elaborated and differentiated ductal network, pinpoint a possible relation between this peculiar physiological event and mammary gland morphogenesis.


Assuntos
Estradiol/metabolismo , Glândulas Mamárias Animais/fisiologia , Morfogênese/fisiologia , Progesterona/metabolismo , Prolactina/metabolismo , Roedores/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Epitélio/fisiologia , Estradiol/sangue , Estradiol/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Lactação/sangue , Lactação/genética , Lactação/metabolismo , Lactação/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Morfogênese/genética , Ovulação/sangue , Ovulação/genética , Ovulação/metabolismo , Ovulação/fisiologia , Gravidez , Progesterona/sangue , Progesterona/genética , Prolactina/genética , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Reprodução/genética , Reprodução/fisiologia , Roedores/crescimento & desenvolvimento
9.
Biocell ; 35(2): 37-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22128588

RESUMO

Lagostomus maximus is a notable mammalian model for reproductive studies. Females have an extremely high ovulation rate, which is due to down-regulation of the follicular apoptosis pathway, which ensures a large pool of developing follicles. This large pool is supported by the convoluted anatomy of the mature ovary, whose germinal tissue is found in irregularly curved ridges throughout the cortex. Medullary tissue is restricted to a minimum. Lyso Tracker Red reconstruction under confocal laser scanning microscopy was used to recognize and measure all follicular stages from primordial to antral. Unlike most mammals in which early primordial follicles are just found in fetal life, the adult ovary shows regions packed with early primordial follicles. Follicle size ranged from 24 to 316 microm. We discuss the relationships of L. maximus follicles size with regard to other species of mammals and propose that the physiology of the adult viscacha ovary obeys to a neoteny process in the evolution of this species.


Assuntos
Microscopia Confocal , Folículo Ovariano/ultraestrutura , Ovário/ultraestrutura , Roedores/crescimento & desenvolvimento , Animais , Feminino , Folículo Ovariano/citologia , Ovário/citologia
10.
Biocell ; Biocell;35(2): 37-42, Aug. 2011. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-639623

RESUMO

Lagostomus maximus is a notable mammalian model for reproductive studies. Females have an extremely high ovulation rate, which is due to down-regulation of the follicular apoptosis pathway, which ensures a large pool of developing follicles. This large pool is supported by the convoluted anatomy of the mature ovary, whose germinal tissue is found in irregularly curved ridges throughout the cortex. Medullary tissue is restricted to a minimum. Lyso Tracker Red reconstruction under confocal laser scanning microscopy was used to recognize and measure all follicular stages from primordial to antral. Unlike most mammals in which early primordial follicles are just found in fetal life, the adult ovary shows regions packed with early primordial follicles. Follicle size ranged from 24 to 316 µm. We discuss the relationships of L. maximus follicles size with regard to other species of mammals and propose that the physiology of the adult viscacha ovary obeys to a neoteny process in the evolution of this species.


Assuntos
Animais , Feminino , Microscopia Confocal , Folículo Ovariano/ultraestrutura , Ovário/ultraestrutura , Roedores/crescimento & desenvolvimento , Folículo Ovariano/citologia , Ovário/citologia
11.
J Mol Histol ; 42(4): 311-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21660456

RESUMO

In contrast to most mammalian species, females of the South American plains vizcacha, Lagostomus maximus, show an extensive suppression of apoptosis-dependent follicular atresia, continuous folliculogenesis, and massive polyovulation. These unusual reproductive features pinpoint to an eventual peculiar modulation of the hypothalamo-hypophyseal-gonadal axis through its main regulator, the gonadotropin-releasing hormone (GnRH). We explored the hypothalamic histological landscape and cellular and subcellular localization of GnRH in adult non-pregnant L. maximus females. Comparison to brain atlases from mouse, rat, guinea pig and chinchilla enabled us to histologically define and locate the preoptic area (POA), the ventromedial nucleus, the median eminence (ME), and the arcuate nucleus (Arc) of the hypothalamus in vizcacha's brain. Specific immunolocalization of GnRH was detected in soma of neurons at medial POA (MPA), ventrolateral preoptic nucleus, septohypothalamic nucleus (SHy) and Arc, and in beaded fibers of MPA, SHy, ventromedial hypothalamic nucleus, anterior hypothalamic area and ME. Electron microscopy examination revealed GnRH associated to cytoplasmic vesicles of the ME and POA neurons, organized both in core and non-core vesicles within varicosities, and in neurosecretory vesicles within the myelinated axons of the MPA. Besides the peculiar and unusual features of folliculogenesis and ovulation in the vizcacha, these results show that hypothalamus histology and GnRH immune-detection and localization are comparable to those found in other mammals. This fact leads to the possibility that specific regulatory mechanisms should be in action to maintain continuous folliculogenesis and massive polyovulation.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Roedores/metabolismo , Animais , Feminino , Hipotálamo/ultraestrutura , Espaço Intracelular/metabolismo , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA