Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 10: 583761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117737

RESUMO

In order to improve our understanding on the microbial complexity associated with Grade C/molar-incisor pattern periodontitis (GC/MIP), we surveyed the oral and fecal microbiomes of GC/MIP and compared to non-affected individuals (Control). Seven Afro-descendants with GC/MIP and seven age/race/gender-matched controls were evaluated. Biofilms from supra/subgingival sites (OB) and feces were collected and submitted to 16S rRNA sequencing. Aggregatibacter actinomycetemcomitans (Aa) JP2 clone genotyping and salivary nitrite levels were determined. Supragingival biofilm of GC/MIP presented greater abundance of opportunistic bacteria. Selenomonas was increased in subgingival healthy sites of GC/MIP compared to Control. Synergistetes and Spirochaetae were more abundant whereas Actinobacteria was reduced in OB of GC/MIP compared to controls. Aa abundance was 50 times higher in periodontal sites with PD≥ 4 mm of GC/MIP than in controls. GC/MIP oral microbiome was characterized by a reduction in commensals such as Kingella, Granulicatella, Haemophilus, Bergeyella, and Streptococcus and enrichment in periodontopathogens, especially Aa and sulfate reducing Deltaproteobacteria. The oral microbiome of the Aa JP2-like+ patient was phylogenetically distant from other GC/MIP individuals. GC/MIP presented a higher abundance of sulfidogenic bacteria in the feces, such as Desulfovibrio fairfieldensis, Erysipelothrix tonsillarum, and Peptostreptococcus anaerobius than controls. These preliminary data show that the dysbiosis of the microbiome in Afro-descendants with GC/MIP was not restricted to affected sites, but was also observed in supragingival and subgingival healthy sites, as well as in the feces. The understanding on differences of the microbiome between healthy and GC/MIP patients will help in developing strategies to improve and monitor periodontal treatment.


Assuntos
Microbiota , Periodontite , Aggregatibacter actinomycetemcomitans , Desulfovibrio , Erysipelothrix , Fezes , Humanos , Incisivo , Dente Molar , Peptostreptococcus , RNA Ribossômico 16S/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-32974213

RESUMO

Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi. Cardiomyopathy and damage to gastrointestinal tissue are the main disease manifestations. There are data suggesting that the immune response to T. cruzi depends on the intestinal microbiota. We hypothesized that Chagas disease is associated with an altered gut microbiome and that these changes are related to the disease phenotype. The stool microbiome from 104 individuals, 73 with Chagas disease (30 with the cardiac, 11 with the digestive, and 32 with the indeterminate form), and 31 healthy controls was characterized using 16S rRNA amplification and sequencing. The QIIME (Quantitative Insights Into Microbial Ecology) platform was used to analyze the data. Alpha and beta diversity indexes did not indicate differences between the groups. However, the relative abundance of Verrucomicrobia, represented primarily by the genus Akkermansia, was significantly lower in the Chagas disease groups, especially the cardiac group, compared to the controls. Furthermore, differences in the relative abundances of Alistipes, Bilophila, and Dialister were observed between the groups. We conclude that T. cruzi infection results in changes in the gut microbiome that may play a role in the myocardial and intestinal inflammation seen in Chagas disease.


Assuntos
Doença de Chagas , Microbioma Gastrointestinal , Trypanosoma cruzi , Disbiose , Fezes , Humanos , RNA Ribossômico 16S/genética
3.
Sci Total Environ ; 550: 670-675, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26849331

RESUMO

Understanding the diversity and metal removal ability of microorganisms associated to contaminated aquatic environments is essential to develop metal remediation technologies in engineered environments. This study investigates through 16S rRNA deep sequencing the composition of a biostimulated microbial consortium obtained from the polluted Tietê River in São Paulo, Brazil. The bacterial diversity of the biostimulated consortium obtained from the contaminated water and sediment was compared to the original sample. The results of the comparative sequencing analyses showed that the biostimulated consortium and the natural environment had γ-Proteobacteria, Firmicutes, and uncultured bacteria as the major classes of microorganisms. The consortium optimum zinc removal capacity, evaluated in batch experiments, was achieved at pH=5 with equilibrium contact time of 120min, and a higher Zn-biomass affinity (KF=1.81) than most pure cultures previously investigated. Analysis of the functional groups found in the consortium demonstrated that amine, carboxyl, hydroxyl, and phosphate groups present in the consortium cells were responsible for zinc uptake.


Assuntos
Recuperação e Remediação Ambiental/métodos , Consórcios Microbianos , Poluentes Químicos da Água/análise , Zinco/análise , Bactérias , Biodegradação Ambiental , Brasil , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA