Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731273

RESUMO

This study aimed to assess the impact of palm oil deodorizer distillate (POD) on the ruminal environment, including (i) microbial community, (ii) ruminal degradability, and (iii) apparent digestibility in sheep. The data used were derived from twenty rumen-cannulated sheep fed five isoproteic and isofiber diets based on elephant grass (Pennisetum purpureum Schum. cv. Roxo) silage supplemented with 0, 25, 50, 75, or 100 g kg-1 POD on a dry matter (DM) basis. Rumen fluid samples were collected three hours after feeding directly from the ventral sac of the rumen via a cannula and then subjected to DNA extraction, which was subsequently used for 16S rDNA amplification, followed by sequencing and diversity analysis. In this study, the microbial diversity was dominated by Bacteroidetes and Firmicutes, followed by Euryarchaetoa, Actinobacteria, and Tenericutes, in the ruminal environment, and was slightly modified when supplemented with the POD up to 100 g/kg (10%), leading to only a slight decrease in the diversity index. The ruminal degradability, ruminal fermentation parameters, and apparent digestibility were slightly compromised by the inclusion of up to 25 g of POD per kg of DM, and larger inclusions interfered with the ruminal degradability of fibrous fractions and the apparent digestibility of dry matter. This lipid supplement showed good results for feeding sheep and is an inexpensive and abundant alternative in the regional market.

2.
An Acad Bras Cienc ; 95(suppl 3): e20211442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37820122

RESUMO

Microorganisms in Antarctica are recognized for having crucial roles in ecosystems functioning and biogeochemical cycles. To explore the diversity and composition of microbial communities through different terrestrial and marine Antarctic habitats, we analyze 16S rRNA sequence datasets from fumarole and marine sediments, soil, snow and seawater environments. We obtained measures of alpha- and beta-diversities, as well as we have identified the core microbiome and the indicator microbial taxa of a particular habitat. Our results showed a unique microbial community structure according to each habitat, including specific taxa composing each microbiome. Marine sediments harbored the highest microbial diversity among the analyzed habitats. In the fumarole sediments, the core microbiome was composed mainly of thermophiles and hyperthermophilic Archaea, while in the majority of soil samples Archaea was absent. In the seawater samples, the core microbiome was mainly composed by cultured and uncultured orders usually identified on Antarctic pelagic ecosystems. Snow samples exhibited common taxa previously described for habitats of the Antarctic Peninsula, which suggests long-distance dispersal processes occurring from the Peninsula to the Continent. This study contributes as a baseline for further efforts on evaluating the microbial responses to environmental conditions and future changes.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Regiões Antárticas , RNA Ribossômico 16S/genética , Archaea/genética , Microbiota/genética , Solo
3.
J Endod ; 46(8): 1105-1112, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32497654

RESUMO

INTRODUCTION: Because active bacteria present a higher abundance of ribosomal RNA (rRNA) than DNA (rRNA gene), the rRNA/DNA ratio of next-generation sequencing (NGS) data was measured to search for active bacteria in endodontic infections. METHODS: Paired complementary DNA and DNA samples from 5 root canals of teeth with apical periodontitis were subjected to polymerase chain reaction with bar-coded primers amplifying the 16S rRNA gene hypervariable regions V4-V5. High-throughput sequencing was performed using MiSeq (Illumina, San Deigo, CA), and data were analyzed using Quantitative Insights Into Microbial Ecology and Human Oral Microbiome Database. Statistical analysis was performed for relative abundance of bacteria in the DNA- and rRNA-based NGS data using the Mann-Whitney test, whereas differences in the diversity and richness indexes were assessed using a nonparametric 2-sample t test (P < .05). For bacterial taxa detected in both approaches, the rRNA/DNA ratios were calculated by dividing the average abundance of individual species in the respective analysis. RESULTS: Although no significant difference was found in the indexes of bacterial richness and diversity, the relative abundance of bacterial members varied in both analyses. Comparing rRNA with DNA data, there was a significant decrease in the relative abundance of Firmicutes (P < .05). The bacterial taxa Bacteroidales [G-2] bacterium HMT 274, Porphyromonas endodontalis, Tannerella forsythia, Alloprevotella tannerae, Prevotella intermedia, Pseudoramibacter alactolyticus, Olsenella sp. HMT 809, Olsenella sp. HMT 939, Olsenella uli, and Fusobacterium nucleatum subsp. animalis were both dominant (DNA ≥ 1%) and active (rRNA/DNA ≥ 1). CONCLUSIONS: The integrated DNA- and rRNA-based NGS strategy was particularly important to disclose the activity of as-yet-uncultivated or difficult-to-culture bacteria in endodontic infections.


Assuntos
Infecções Bacterianas , Sequenciamento de Nucleotídeos em Larga Escala , Actinobacteria , Bactérias , Clostridiales , DNA Bacteriano , Humanos , RNA Ribossômico 16S
4.
Front Microbiol ; 9: 899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867810

RESUMO

Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

5.
Front Microbiol ; 8: 153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28210255

RESUMO

Microorganisms dominate most Antarctic marine ecosystems, in terms of biomass and taxonomic diversity, and play crucial role in ecosystem functioning due to their high metabolic plasticity. Admiralty Bay is the largest bay on King George Island (South Shetland Islands, Antarctic Peninsula) and a combination of hydro-oceanographic characteristics (bathymetry, sea ice and glacier melting, seasonal entrance of water masses, turbidity, vertical fluxes) create conditions favoring organic carbon deposition on the seafloor and microbial activities. We sampled surface sediments from 15 sites across Admiralty Bay (100-502 m total depth) and the adjacent North Bransfield Basin (693-1147 m), and used the amplicon 454-sequencing of 16S rRNA gene tags to compare the bacterial composition, diversity, and microbial community structure across environmental parameters (sediment grain size, pigments and organic nutrients) between the two areas. Marine sediments had a high abundance of heterotrophic Gammaproteobacteria (92.4% and 83.8% inside and outside the bay, respectively), followed by Alphaproteobacteria (2.5 and 5.5%), Firmicutes (1.5 and 1.6%), Bacteroidetes (1.1 and 1.7%), Deltaproteobacteria (0.8 and 2.5%) and Actinobacteria (0.7 and 1.3%). Differences in alpha-diversity and bacterial community structure were found between the two areas, reflecting the physical and chemical differences in the sediments, and the organic matter input.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA