Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(8): e0202505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138403

RESUMO

In many animals the circadian rhythm of locomotor activity is controlled by an endogenous circadian clock. Using custom made housing and video tracking software in order to obtain high spatial and temporal resolution, we studied the statistical properties of the locomotor activity of wild type and two clock mutants of Drosophila melanogaster. We show here that the distributions of activity and quiescence bouts for the clock mutants in light-dark conditions (LD) are very different from the distributions obtained when there are no external cues from the environment (DD). In the wild type these distributions are very similar, showing that the clock controls this aspect of behavior in both regimes (LD and DD). Furthermore, the distributions are very similar to those reported for Wistar rats. For the timing of events we also observe important differences, quantified by how the event rate distributions scale for increasing time windows. We find that for the wild type these distributions can be rescaled by the same function in DD as in LD. Interestingly, the same function has been shown to rescale the rate distributions in Wistar rats. On the other hand, for the clock mutants it is not possible to rescale the rate distributions, which might indicate that the extent of circadian control depends on the statistical properties of activity and quiescence.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Locomoção/genética , Mutação , Animais , Drosophila melanogaster , Ratos , Ratos Wistar
2.
Mol Cell Neurosci ; 44(2): 154-64, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20230896

RESUMO

Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration.


Assuntos
Apoptose/genética , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Hipocampo/metabolismo , Degeneração Neural/metabolismo , Animais , Axônios/patologia , Células Cultivadas , Proteínas do Citoesqueleto/genética , Regulação para Baixo/genética , Inativação Gênica/fisiologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos , Proteínas dos Microfilamentos , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA