Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163087

RESUMO

Canine prostate cancer (PC) is an aggressive disease, and dogs can be considered comparative models for human PC. In recent years, canine PC has been shown to resemble human castrate-resistant prostate cancer. The influx and efflux of testosterone in prostatic luminal cells are regulated by P-glycoprotein (P-gp). Therefore, human PC generally lacks P-gp expression and maintains the expression of androgen receptors (ARs). However, this co-expression has not previously been investigated in dogs. Therefore, this study aimed to evaluate AR and P-gp co-expression to elucidate these protein patterns in canine prostate samples. We identified AR/P-gp double immunofluorescence co-expression of both proteins in normal luminal cells. However, in canine PC, cells lack AR expression and exhibit increased P-gp expression. These results were confirmed by gene expression analyses. Overall, our results strongly suggest that normal canine prostate testosterone influx may be regulated by P-gp expression, and that during progression to PC, prostatic cells lack AR expression and P-gp overexpress. P-gp expression in canine PC may be related to a phenotype of multiple drug resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Androgênios/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Cães , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética
2.
Front Vet Sci ; 7: 558978, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304937

RESUMO

Canine and human bladder cancer present similar anatomical, morphological, and molecular characteristics, and dogs can be considered a model for human bladder cancer. However, the veterinary literature lacks information regarding cross-validation analysis between human and canine large-scale data. Therefore, this research aimed to perform a meta-analysis of the canine literature on bladder cancer, identifying genes and proteins previously evaluated in these studies. In addition, we also performed a cross-validation of the canine transcriptome data and the human data from The Cancer Genome Atlas (TCGA) to identify potential markers for both species. The meta-analysis was performed using the following indexing terms: "bladder" AND "carcinoma" AND "dog" in different international databases, and 385 manuscripts were identified in our initial search. Then, several inclusion criteria were applied, and only 25 studies met these criteria. Among these studies, five presented transcriptome data, and 20 evaluated only isolated genes or proteins. Regarding the studies involving isolated protein analysis, the HER-2 protein was the most studied (3/20), followed by TAG-72 (2/20), COX-2 (2/20), survivin (2/20), and CK7 (2/20), and the remaining nine studies evaluated one isolated protein each. Regarding the cross-validation analysis of human and canine transcriptome data, we identified 35 dysregulated genes, including ERBB2, TP53, EGFR, and E2F2. Our results demonstrate that the canine literature on bladder cancer previously focused on the evaluation of isolated markers with no association with patient survival. This limitation may be related to the lack of a homogenous protocol for treating patients and the lack of follow-up during treatment. In addition, the lack of information regarding tumor muscle invasion can be considered an important limitation when comparing human and canine bladder tumors. Our in silico analysis involving canine and human transcriptome data provided several genes with the potential to be markers for both human and canine bladder tumors, and these genes should be considered for future studies on canine bladder cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA