RESUMO
An assessment of the major pigments and neurotoxins and a description of the phytoplankton community were carried out within the coastal region of Rio de Janeiro State (Brazil), during winter and the following spring of 2018. Overall, six stations were investigated for oceanographic conditions (with CTD casts). Filtered water samples were used to estimate the chlorophyll a (CHL-a), carotenoids (CAR), and phycobiliproteins (PHY) using UV-Vis spectrophotometry, as well as the quantification of saxitoxins (STX) and domoic acid (DA), through High Performance Liquid Chromatography (HPLC). Planktonic organisms were counted using sedimentation chambers of different volumes and an inverted microscope. A cluster analysis, SIMPER, and ANOSIM were applied to the phytoplankton data along with diversity indexes, and non-parametric statistics to phycotoxins and pigments. There was a significant difference between the winter and spring phytoplankton community, associated with the mixed layer depth (r2 = -0.626, p < 0.05) and temperature (r2 = 0.641, p < 0.05). Phytoplankton biomass and C:CHL-a indicated a higher production during the winter than in spring, with the potentially toxic genus Pseudo-nitzschia responsible for 12.79% of autotrophic abundance (SIMPER output). Pigments showed a slight increase in CAR during spring, while PHY remained at trace concentrations. Both the DA and STX were quantified in winter and spring, but with significant differences only for STX between the sampling periods. Among the 71 taxa, 11 were identified as potentially toxic with an emphasis on STX-producing dinoflagellates and cyanobacteria, such as Alexandrium sp., Gymnodinium spp. along with Trichodesmium spp. Season-related environmental variability may be the major driving force modulating the mixed assemblage of species that support different levels of phycotoxins.
Assuntos
Monitoramento Ambiental , Toxinas Marinhas/toxicidade , Fitoplâncton , Biomassa , Brasil , Clorofila A , Cianobactérias , Diatomáceas , Dinoflagellida , Ácido Caínico/análogos & derivados , Toxinas Marinhas/análise , Neurotoxinas , Estações do Ano , Água do Mar , TrichodesmiumRESUMO
This study evaluated the effect of dietary inclusion of lyophilized açaí Euterpe oleracea (LEO) on redox status of shrimp Litopenaeus vannamei (initial weight 1.5 ± 0.39 g) upon exposure to cyanotoxin nodularin (NOD) in bioflocs system. Three hundred juvenile shrimps were randomly divided into two groups and fed twice a day with two diets: one containing 0.00 (control diet) and the other 10.0% LEO (w/w) for 30-days. After the feeding period, both shrimp groups were submitted to three treatments (14 L; 7 shrimp/tank) with different concentrations of cyanotoxin NOD (0.00; 0.25; and 1.00 µg/L) dissolved in water with 96 h of exposure. Then, the shrimps were sampled (n = 15/treatment) for the determination of reduced glutathione (GSH), the activity of glutathione-S-transferase (GST), sulfhydryl groups associated to proteins (P-SH), and lipid peroxidation (TBARS) in the hepatopancreas, gills and muscle. The NOD accumulation was measured in the muscle. The results revealed that dietary LEO significantly increased GSH levels in the hepatopancreas and gills of the shrimps exposed to NOD. Toxin exposure did not modify GST activity in all organs. Muscle TBARS levels were lower in the shrimp fed with the LEO diet and exposed to NOD. The NOD toxin did not accumulate in the muscle but notably was detected in the control groups fed or not with dietary LEO. Açaí was able to induce the antioxidant system of L. vannamei, as well as lowered the oxidative damage in shrimps exposed to NOD, suggesting its use as a chemoprotectant against cyanotoxins.
Assuntos
Toxinas Bacterianas/toxicidade , Suplementos Nutricionais/análise , Euterpe/química , Toxinas Marinhas/toxicidade , Penaeidae/imunologia , Peptídeos Cíclicos/toxicidade , Substâncias Protetoras/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Liofilização , Nodularia , Oxirredução , Distribuição AleatóriaRESUMO
Domoic acid (DA) or Amnesic Shellfish Poisoning (ASP) produced by the genus Pseudo-nitzschia diatom was investigated in two seasonal periods in fishing areas of Katsuwonus pelamis in the South Atlantic Ocean. Higher DA concentrations were found in spring compared to winter. Pseudo-nitzschia spp. more quantified in winter than in spring, while P. pungens, a species among the most reported for an AD toxic potential, was only found in spring.