Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(1): 015101, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505470

RESUMO

Using Monte Carlo simulations, we study the assembly of colloidal particles interacting via isotropic core-corona potentials in two dimensions and confined in a circular box. We explore the structural variety at low temperatures as function of the number of particles (N) and the size of the confining box and find a rich variety of patterns that are not observed in unconfined flat space. For a small number of particles [Formula: see text], we identify the zero-temperature minimal energy configurations at a given box size. When the number of particles is large ([Formula: see text]), we distinguish different regimes that appear in route towards close packing configurations as the box size decreases. These regimes are characterized by the increase in the number of branching points and their coordination number. Interestingly, we obtain anisotropic open structures with unexpected variety of rotational symmetries that can be controlled by changing the model parameters, and some of the structures have chirality, in spite of the isotropy of the interactions and of the confining box. For arbitrary temperatures, we employ Monte Carlo integration to obtain the average energy and the configurational entropy of the system, which are then used to construct a phase diagram as function of temperature and box radius. Our findings show that confined core-corona particles can be a suitable system to engineer particles with highly complex internal structure that may serve as building blocks in hierarchical assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA