Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(6): 2559-2569, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478880

RESUMO

We report on a theoretical study of a Cs2 molecule illuminated by two lasers and show how this can result in novel quantum dynamics. We reveal that these interactions facilitate the bypass of the non-crossing rule, forming light-induced conical intersections and modifiable avoided crossings. Our findings show how laser field orientation and strength, along with initial phase differences, can control molecular-state transitions, especially on the micromotion scale. We also extensively discuss how the interaction of radiation with matter gives rise to the emergence of potential energy surfaces of hybrids of radiation and molecular states. This research advances a technique for manipulating photoassociation processes in Cs2 molecules, offering potential new avenues in quantum control.

2.
Nano Lett ; 23(23): 11013-11018, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37984421

RESUMO

We report on the effects of electron-phonon interaction in materials such as graphene, showing that it enables the formation of a gap bridged by unique edge states. These states exhibit a distinctive locking among propagation direction, valley, and phonon mode, allowing for the generation of electron-phonon entangled states whose parts can be easily split. We discuss the effect of the chiral atomic motion in the zone boundary phonons leading to this effect. Our findings shed light on how to harness these unconventional states in quantum research.

3.
Phys Rev Lett ; 128(6): 066801, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213173

RESUMO

Unlike the chirality of electrons, the intrinsic chirality of phonons has only surfaced in recent years. Here, we report on the effects of the interaction between electrons and chiral phonons in two-dimensional materials by using a nonperturbative solution. We show that chiral phonons introduce inelastic Umklapp processes resulting in copropagating edge states that coexist with a continuum. Transport simulations further reveal the robustness of the edge states. Our results hint on the possibility of having a metal embedded with hybrid electron-phonon states of matter.

4.
Nano Lett ; 21(7): 3177-3183, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33819037

RESUMO

Harnessing the unique features of topological materials for the development of a new generation of topological based devices is a challenge of paramount importance. Using Floquet scattering theory combined with atomistic models we study the interplay among laser illumination, spin, and topology in a two-dimensional material with spin-orbit coupling. Starting from a topological phase, we show how laser illumination can selectively disrupt the topological edge states depending on their spin. This is manifested by the generation of pure spin photocurrents and spin-polarized charge photocurrents under linearly and circularly polarized laser illumination, respectively. Our results open a path for the generation and control of spin-polarized photocurrents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA