Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36983522

RESUMO

Sporotrichosis is the main subcutaneous mycosis worldwide transmitted by animal or plant vectors and often escalates to outbreaks or epidemics. The current cat-transmitted sporotrichosis driven by Sporothrix brasiliensis has become a significant public health issue in South America. Transmission dynamics remain enigmatic due to the lack of development of polymorphic markers for molecular epidemiological analysis. This study used a high-throughput mining strategy to characterize simple sequence repeat (SSR) markers from Sporothrix genomes. A total of 118,140-143,912 SSR loci were identified (82,841-98,369 unique markers), with a 3651.55-3804.65 SSR/Mb density and a majority of dinucleotides motifs (GC/CG). We developed a panel of 15 highly polymorphic SSR markers suitable for genotyping S. brasiliensis, S. schenckii, and S. globosa. PCR amplification revealed 240 alleles in 180 Sporothrix isolates with excellent polymorphic information content (PIC = 0.9101), expected heterozygosity (H = 0.9159), and discriminating power (D = 0.7127), supporting the effectiveness of SSR markers in uncovering cryptic genetic diversity. A systematic population genetic study estimated three clusters, corresponding to S. brasiliensis (population 1, n = 97), S. schenckii (population 2, n = 49), and S. globosa (population 3, n = 34), with a weak signature of mixed ancestry between populations 1 and 2 or 3 and 2. Partitioning of genetic variation via AMOVA revealed highly structured populations (ΦPT = 0.539; Nm = 0.213; p < 0.0001), with approximately equivalent genetic variability within (46%) and between (54%) populations. Analysis of SSR diversity supports Rio de Janeiro (RJ) as the center of origin for contemporary S. brasiliensis infections. The recent emergence of cat-transmitted sporotrichosis in northeastern Brazil indicates an RJ-Northeast migration resulting in founder effects during the introduction of diseased animals into sporotrichosis-free areas. Our results demonstrated high cross-species transferability, reproducibility, and informativeness of SSR genetic markers, helping dissect deep and fine-scale genetic structures and guiding decision making to mitigate the harmful effects of the expansion of cat-transmitted sporotrichosis.

2.
Front Vet Sci ; 8: 733357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631859

RESUMO

Emerging infectious diseases in wildlife are increasingly associated with animal mortality and species declines, but their source and genetic characterization often remains elusive. Amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has been associated with catastrophic and well-documented amphibian population declines and extinctions at the global scale. We used histology and whole-genome sequencing to describe the lesions caused by, and the genetic variability of, two Bd isolates obtained from a mass mortality event in a captive population of the threatened Chilean giant frog (Calyptocephalella gayi). This was the first time an association between Bd and high mortality had been detected in this charismatic and declining frog species. Pathological examinations revealed that 30 dead metamorphosed frogs presented agnathia or brachygnathia, a condition that is reported for the first time in association with chytridiomycosis. Phylogenomic analyses revealed that Bd isolates (PA1 and PA2) from captive C. gayi group with other Bd isolates (AVS2, AVS4, and AVS7) forming a single highly supported Chilean Bd clade within the global panzootic lineage of Bd (BdGPL). These findings are important to inform the strengthening of biosecurity measures to prevent the impacts of chytridiomycosis in captive breeding programs elsewhere.

3.
Mol Ecol ; 30(5): 1322-1335, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33411382

RESUMO

Microbiome-pathogen interactions are increasingly recognized as an important element of host immunity. While these host-level interactions will have consequences for community disease dynamics, the factors which influence host microbiomes at larger scales are poorly understood. We here describe landscape-scale pathogen-microbiome associations within the context of post-epizootic amphibian chytridiomycosis, a disease caused by the panzootic chytrid fungus Batrachochytrium dendrobatidis. We undertook a survey of Neotropical amphibians across altitudinal gradients in Ecuador ~30 years following the observed amphibian declines and collected skin swab-samples which were metabarcoded using both fungal (ITS-2) and bacterial (r16S) amplicons. The data revealed marked variation in patterns of both B. dendrobatidis infection and microbiome structure that are associated with host life history. Stream breeding amphibians were most likely to be infected with B. dendrobatidis. This increased probability of infection was further associated with increased abundance and diversity of non-Batrachochytrium chytrid fungi in the skin and environmental microbiome. We also show that increased alpha diversity and the relative abundance of fungi are lower in the skin microbiome of adult stream amphibians compared to adult pond-breeding amphibians, an association not seen for bacteria. Finally, stream tadpoles exhibit lower proportions of predicted protective microbial taxa than pond tadpoles, suggesting reduced biotic resistance. Our analyses show that host breeding ecology strongly shapes pathogen-microbiome associations at a landscape scale, a trait that may influence resilience in the face of emerging infectious diseases.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Anfíbios , Animais , Quitridiomicetos/genética , Equador , Microbiota/genética , Micoses/veterinária
4.
PLoS Negl Trop Dis ; 14(7): e0008330, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609739

RESUMO

Sporotrichosis is a chronic subcutaneous mycosis caused by Sporothrix species, of which the main aetiological agents are S. brasiliensis, S. schenckii, and S. globosa. Infection occurs after a traumatic inoculation of Sporothrix propagules in mammals' skin and can follow either a classic route through traumatic inoculation by plant debris (e.g., S. schenckii and S. globosa) or an alternative route through zoonotic transmission from animals (e.g., S. brasiliensis). Epizootics followed by a zoonotic route occur in Brazil, with Rio de Janeiro as the epicenter of a recent cat-transmitted epidemic. DNA-based markers are needed to explore the epidemiology of these Sporothrix expansions using molecular methods. This paper reports the use of amplified-fragment-length polymorphisms (AFLP) to assess the degree of intraspecific variability among Sporothrix species. We used whole-genome sequences from Sporothrix species to generate 2,304 virtual AFLP fingerprints. In silico screening highlighted 6 primer pair combinations to be tested in vitro. The protocol was used to genotype 27 medically relevant Sporothrix. Based on the overall scored AFLP markers (97-137 fragments), the values of polymorphism information content (PIC = 0.2552-0.3113), marker index (MI = 0.002-0.0039), effective multiplex ratio (E = 17.8519-35.2222), resolving power (Rp = 33.6296-63.1852), discriminating power (D = 0.9291-0.9662), expected heterozygosity (H = 0.3003-0.3857), and mean heterozygosity (Havp = 0.0001) demonstrated the utility of these primer combinations for discriminating Sporothrix. AFLP markers revealed cryptic diversity in species previously thought to be the most prevalent clonal type, such as S. brasiliensis, responsible for cat-transmitted sporotrichosis, and S. globosa responsible for large sapronosis outbreaks in Asia. Three combinations (#3 EcoRI-FAM-GA/MseI-TT, #5 EcoRI-FAM-GA/MseI-AG, and #6 EcoRI-FAM-TA/MseI-AA) provide the best diversity indices and lowest error rates. These methods make it easier to track routes of disease transmission during epizooties and zoonosis, and our DNA fingerprint assay can be further transferred between laboratories to give insights into the ecology and evolution of pathogenic Sporothrix species and to inform management and mitigation strategies to tackle the advance of sporotrichosis.


Assuntos
Doenças do Gato/epidemiologia , Mapeamento Cromossômico , Sporothrix/classificação , Esporotricose/epidemiologia , Esporotricose/veterinária , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Brasil/epidemiologia , Doenças do Gato/microbiologia , Gatos , Surtos de Doenças , Genótipo , Epidemiologia Molecular , Sporothrix/isolamento & purificação , Esporotricose/microbiologia
5.
Mol Ecol ; 25(13): 2961-3, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27373706

RESUMO

In their article in this issue of Molecular Ecology, Jenkinson et al. () and colleagues address a worrying question-how could arguably the most dangerous pathogen known to science, Batrachochytrium dendrobatidis (Bd), become even more virulent? The answer: start having sex. Jenkinson et al. present a case for how the introduction into Brazil of the globally invasive lineage of Bd, BdGPL, has disrupted the relationship between native amphibians and an endemic Bd lineage, BdBrazil. BdBrazil is hypothesized to be native to the Atlantic Forest and so have a long co-evolutionary history with biodiverse Atlantic Forest amphibian community. The authors suggest that this has resulted in a zone of hybrid Bd genotypes which are potentially more likely to cause fatal chytridiomycosis than either parent lineage. The endemic-nonendemic Bd hybrid genotypes described in this study, and the evidence for pathogen translocation via the global amphibian trade presented, highlights the danger of anthropogenic pathogen dispersal. This research emphasizes that biosecurity regulations may have to refocus on lineages within species if we are to mitigate against the danger of new, possibly hypervirulent genotypes of pathogens emerging as phylogeographic barriers are breached.


Assuntos
Quitridiomicetos/genética , Micoses/epidemiologia , Anfíbios , Animais , Brasil , Florestas
6.
mBio ; 5(4): e01464-14, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028429

RESUMO

The emergence of distinct populations of Cryptococcus gattii in the temperate North American Pacific Northwest (PNW) was surprising, as this species was previously thought to be confined to tropical and semitropical regions. Beyond a new habitat niche, the dominant emergent population displayed increased virulence and caused primary pulmonary disease, as opposed to the predominantly neurologic disease seen previously elsewhere. Whole-genome sequencing was performed on 118 C. gattii isolates, including the PNW subtypes and the global diversity of molecular type VGII, to better ascertain the natural source and genomic adaptations leading to the emergence of infection in the PNW. Overall, the VGII population was highly diverse, demonstrating large numbers of mutational and recombinational events; however, the three dominant subtypes from the PNW were of low diversity and were completely clonal. Although strains of VGII were found on at least five continents, all genetic subpopulations were represented or were most closely related to strains from South America. The phylogenetic data are consistent with multiple dispersal events from South America to North America and elsewhere. Numerous gene content differences were identified between the emergent clones and other VGII lineages, including genes potentially related to habitat adaptation, virulence, and pathology. Evidence was also found for possible gene introgression from Cryptococcus neoformans var. grubii that is rarely seen in global C. gattii but that was present in all PNW populations. These findings provide greater understanding of C. gattii evolution in North America and support extensive evolution in, and dispersal from, South America. Importance: Cryptococcus gattii emerged in the temperate North American Pacific Northwest (PNW) in the late 1990s. Beyond a new environmental niche, these emergent populations displayed increased virulence and resulted in a different pattern of clinical disease. In particular, severe pulmonary infections predominated in contrast to presentation with neurologic disease as seen previously elsewhere. We employed population-level whole-genome sequencing and analysis to explore the genetic relationships and gene content of the PNW C. gattii populations. We provide evidence that the PNW strains originated from South America and identified numerous genes potentially related to habitat adaptation, virulence expression, and clinical presentation. Characterization of these genetic features may lead to improved diagnostics and therapies for such fungal infections. The data indicate that there were multiple recent introductions of C. gattii into the PNW. Public health vigilance is warranted for emergence in regions where C. gattii is not thought to be endemic.


Assuntos
Cryptococcus gattii/classificação , Cryptococcus gattii/genética , Genoma Fúngico/genética , Evolução Biológica , Noroeste dos Estados Unidos , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA