Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004123

RESUMO

The bovine Major Histocompatibility Complex (MHC), also known as the Bovine Leucocyte Antigen (BoLA) complex, is the genomic region that encodes the most important molecules for antigen presentation to initiate immune responses. The first evidence of MHC in bovines pointed to a locus containing 2 antigens, one detected by cytotoxic antiserum (MHC class I) and another studied by mixed lymphocyte culture tests (MHC class II). The most studied gene in the BoLA region is the highly polymorphic BoLA-DRB3, which encodes a ß chain with a peptide groove domain involved in antigen presentation for T cells that will develop and co-stimulate cellular and humoral effector responses. BoLA-DRB3 alleles have been associated with outcomes in infectious diseases such as mastitis, trypanosomiasis, and tick loads, and with production traits. To catalog these alleles, 2 nomenclature methods were proposed, and the current use of both systems makes it difficult to list, comprehend and apply these data effectively. In this review we have organized the knowledge available in all of the reports on the frequencies of BoLA-DRB3 alleles. It covers information from studies made in at least 26 countries on more than 30 breeds; studies are lacking in countries that are important producers of cattle livestock. We highlight practical applications of BoLA studies for identification of markers associated with resistance to infectious and parasitic diseases, increased production traits and T cell epitope mapping, in addition to genetic diversity and conservation studies of commercial and creole and locally adapted breeds. Finally, we provide support for the need of studies to discover new BoLA alleles and uncover unknown roles of this locus in production traits.

2.
J Basic Microbiol ; 64(1): 94-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37696778

RESUMO

The current study examined the impact of ultraviolet (UV)-B radiation in Metarhizium pingshaense blastospores' photolyase expression and their virulence against Rhipicephalus microplus. Blastospores were exposed to UV under laboratory and field conditions. Ticks were treated topically with fungal suspension and exposed to UV-B in the laboratory for three consecutive days. The expression of cyclobutane pyrimidine dimmers (CPDs)-photolyase gene maphr1-2 in blastospores after UV exposure followed by white light exposure was accessed after 0, 8, 12, 24, 36, and 48 h. Average relative germination of blastospores 24 h after in vitro UV exposure was 8.4% lower than 48 h. Despite this, the relative germination of blastospores exposed to UV in the field 18 h (95.7 ± 0.3%) and 28 h (97.3 ± 0.8%) after exposure were not different (p > 0.05). Ticks treated with fungus and not exposed to UV exhibited 0% survival 10 days after the treatment, while fungus-treated ticks exposed to UV exhibited 50 ± 11.2% survival. Expression levels of maphr1-2 8, 12, and 24 h after UV-B exposure were not different from time zero. Maphr1-2 expression peak in M. pingshaense blastospores occurred 36 h after UV-B exposure, in the proposed conditions and times analyzed, suggesting repair mechanisms other than CPD-mediated-photoreactivation might be leading blastospores' germination from 0 to 24 h.


Assuntos
Desoxirribodipirimidina Fotoliase , Metarhizium , Rhipicephalus , Animais , Rhipicephalus/metabolismo , Rhipicephalus/microbiologia , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Virulência , Luz , Raios Ultravioleta , Metarhizium/metabolismo , Controle Biológico de Vetores
3.
J Fungi (Basel) ; 8(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36547645

RESUMO

Dopamine modulates ticks and insect hemocytes and links these arthropods' nervous and immune systems. For the first time, the present study analyzed the effect of a dopamine receptor antagonist on the survival, biological parameters, phagocytic index, and dopamine detection in the hemocytes of ticks challenged by Metarhizium anisopliae. The survival and egg production index of Rhipicephalus microplus were negatively impacted when ticks were inoculated with the antagonist and fungus. Five days after the treatment, the survival of ticks treated only with fungus was 2.2 times higher than ticks treated with the antagonist (highest concentration) and fungus. A reduction in the phagocytic index of hemocytes of 68.4% was observed in the group inoculated with the highest concentration of the antagonist and fungus compared to ticks treated only with fungus. No changes were detected in the R. microplus levels of intrahemocytic dopamine or hemocytic quantification. Our results support the hypothesis that dopamine is crucial for tick immune defense, changing the phagocytic capacity of hemocytes and the susceptibility of ticks to entomopathogenic fungi.

4.
Dev Comp Immunol ; 126: 104234, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450130

RESUMO

Entomopathogenic fungi (EPF) have been widely explored for their potential in the biological control of insect pests and as an environmentally friendly alternative to acaricides for limiting tick infestation in the field. The arthropod cuticle is the main barrier against fungal infection, however, an understanding of internal defense mechanisms after EPF intrusion into the invertebrate hemocoel is still rather limited. Using an infection model of the European Lyme borreliosis vector Ixodes ricinus with the EPF Metarhizium robertsii, we demonstrated that ticks are capable of protecting themselves to a certain extent against mild fungal infections. However, tick mortality dramatically increases when the capability of tick hemocytes to phagocytose fungal conidia is impaired. Using RNAi-mediated silencing of tick thioester-containing proteins (TEPs), followed by in vitro and/or in vivo phagocytic assays, we found that C3-like complement components and α2-macroglobulin pan-protease inhibitors secreted to the hemolymph play pivotal roles in M. robertsii phagocytosis.


Assuntos
Ixodes , Doença de Lyme , Metarhizium , Animais , Hemócitos
5.
J Fungi (Basel) ; 7(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829237

RESUMO

Dopamine (DA) is a biogenic monoamine reported to modulate insect hemocytes. Although the immune functions of DA are known in insects, there is a lack of knowledge of DA's role in the immune system of ticks. The use of Metarhizium anisopliae has been considered for tick control, driving studies on the immune response of these arthropods challenged with fungi. The present study evaluated the effect of DA on the cellular immune response and survival of Rhipicephalus microplus inoculated with M. anisopliae blastospores. Exogenous DA increased both ticks' survival 72 h after M. anisopliae inoculation and the number of circulating hemocytes compared to the control group, 24 h after the treatment. The phagocytic index of tick hemocytes challenged with M. anisopliae did not change upon injection of exogenous DA. Phenoloxidase activity in the hemolymph of ticks injected with DA and the fungus or exclusively with DA was higher than in untreated ticks or ticks inoculated with the fungus alone, 72 h after treatment. DA was detected in the hemocytes of fungus-treated and untreated ticks. Unveiling the cellular immune response in ticks challenged with entomopathogenic fungi is important to improve strategies for the biological control of these ectoparasites.

6.
Rev Bras Parasitol Vet ; 29(2): e000220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32609237

RESUMO

The effects of two different products - Metarril® SP Organic (dry conidia) and Metarril® SC Organic (emulsifiable concentrated conidia in vegetable oil) - on eggs, larvae and Rhipicephalus microplus engorged females were here explored. Three concentrations (108, 107, and 106 conidia mL-1) for both products were prepared in water + 0.1% Tween® 80 (v/v); afterward, bioassays were carried out for all R. microplus stages by immersion in suspensions (Metarril® SP) or formulations (Metarril® SC). Metarril® SP suspensions showed low efficacy and did not affect biological parameters of treated engorged females; for eggs and larvae, only slight decreases in hatchability and larvae population were observed. Despite a delay in germination, Metarril® SC presented better results; for females, reductions in Egg Mass Weight (EMW) and Egg Production Index (EPI) were reported. On eggs, 108 conidia mL-1 increased Incubation Period (IP), shortened Hatching Period (HP) and decreased hatchability by up to 61%; for larvae, 107 and 108 conidia mL-1 reached 99.6 and 100% larval mortality respectively, 10 days after fungal exposure. Thus, further studies involving the use of oil-based formulations for ticks such as Metarril® SC need to be performed, especially to control the most susceptible stages (eggs and larvae).


Assuntos
Metarhizium , Controle Biológico de Vetores , Rhipicephalus , Controle de Ácaros e Carrapatos , Animais , Feminino , Larva , Rhipicephalus/microbiologia , Controle de Ácaros e Carrapatos/métodos , Controle de Ácaros e Carrapatos/normas
7.
R. bras. Parasitol. Vet. ; 29(2): e000220, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-28376

RESUMO

The effects of two different products - Metarril® SP Organic (dry conidia) and Metarril® SC Organic (emulsifiable concentrated conidia in vegetable oil) - on eggs, larvae and Rhipicephalus microplus engorged females were here explored. Three concentrations (108, 107, and 106 conidia mL-1) for both products were prepared in water + 0.1% Tween® 80 (v/v); afterward, bioassays were carried out for all R. microplus stages by immersion in suspensions (Metarril® SP) or formulations (Metarril® SC). Metarril® SP suspensions showed low efficacy and did not affect biological parameters of treated engorged females; for eggs and larvae, only slight decreases in hatchability and larvae population were observed. Despite a delay in germination, Metarril® SC presented better results; for females, reductions in Egg Mass Weight (EMW) and Egg Production Index (EPI) were reported. On eggs, 108 conidia mL-1 increased Incubation Period (IP), shortened Hatching Period (HP) and decreased hatchability by up to 61%; for larvae, 107 and 108 conidia mL-1 reached 99.6 and 100% larval mortality respectively, 10 days after fungal exposure. Thus, further studies involving the use of oil-based formulations for ticks such as Metarril® SC need to be performed, especially to control the most susceptible stages (eggs and larvae).(AU)


No presente trabalho, os efeitos de dois diferentes produtos foram avaliados - Metarril® SP Organic (conídios secos) e Metarril® SC Organic (conídios concentrados em óleo vegetal) - para ovos, larvas e fêmeas ingurgitadas de Rhipicephalus microplus. Três concentrações (108, 107 e 106 conídios mL-1) para cada produto foram preparadas em água + Tween® 80 0,1% (v/v); os bioensaios foram realizados para todos os estágios de R. microplus por imersão nas suspensões (Metarril® SP) ou formulações (Metarril® SC). Metarril® SP não afetou os parâmetros biológicos das fêmeas, demonstrando assim baixa eficácia; para ovos e larvas, foram observadas discretas diminuições na eclodibilidade e na população de larvas. Apesar de um atraso na germinação, Metarril® SC apresentou melhores resultados; para as fêmeas, foram detectadas reduções no Peso da Massa de Ovos (PMO) e no Índice de Produção de Ovos (IPO). Para os ovos, a concentração de 108 conídios mL-1 aumentou o Período de Incubação (PI), reduziu o Período de Eclosão (PE) e também o da eclodibilidade em até 61%; para larvas, 107 e 108 conídios mL-1 atingiram 99,6 e 100% de mortalidade larval, respectivamente, 10 dias após a exposição fúngica. Com isso, estudos adicionais que envolvem o uso de formulações à base de óleo para carrapatos, como Metarril® SC, precisam ser realizados, especialmente para controlar os estágios mais suscetíveis (ovos e larvas).(AU)


Assuntos
Animais , Bovinos , Técnicas In Vitro/classificação , Técnicas In Vitro/veterinária , Metarhizium , Rhipicephalus/imunologia , Controle de Ácaros e Carrapatos
8.
Front Physiol ; 10: 654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191351

RESUMO

Metarhizium is an entomopathogenic fungus widely employed in the biological control of arthropods. Hemocytes present in the hemolymph of invertebrates are the cells involved in the immune response of arthropods. Despite this, knowledge about Rhipicephalus microplus hemocytes morphological aspects as well as their role in response to the fungal infection is scarce. The present study aimed to analyze the hemocytes of R. microplus females after Metarhizium robertsii infection, using light and electron microscopy approaches associated with the cytotoxicity evaluation. Five types of hemocytes (prohemocytes, spherulocytes, plasmatocytes, granulocytes, and oenocytoids) were described in the hemolymph of uninfected ticks, while only prohemocytes, granulocytes, and plasmatocytes were observed in fungus-infected tick females. Twenty-four hours after the fungal infection, only granulocytes and plasmatocytes were detected in the transmission electron microscopy analysis. Hemocytes from fungus-infected tick females showed several cytoplasmic vacuoles with different electron densities, and lipid droplets in close contact to low electron density vacuoles, as well as the formation of autophagosomes and subcellular material in different stages of degradation could also be observed. M. robertsii propagules were more toxic to tick hemocytes in the highest concentration tested (1.0 × 108 conidia mL-1). Interestingly, the lowest fungus concentration did not affect significantly the cell viability. Microanalysis showed that cells granules from fungus-infected and uninfected ticks had similar composition. This study addressed the first report of fungal cytotoxicity analyzing ultrastructural effects on hemocytes of R. microplus infected with entomopathogenic fungi. These results open new perspectives for the comprehension of ticks physiology and pathology, allowing the identification of new targets for the biological control.

9.
Front physiol, v. 10, 654, maio 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2767

RESUMO

Metarhizium is an entomopathogenic fungus widely employed in the biological control of arthropods. Hemocytes present in the hemolymph of invertebrates are the cells involved in the immune response of arthropods. Despite this, knowledge about Rhipicephalus microplus hemocytes morphological aspects as well as their role in response to the fungal infection is scarce. The present study aimed to analyze the hemocytes of R. microplus females after Metarhizium robertsii infection, using light and electron microscopy approaches associated with the cytotoxicity evaluation. Five types of hemocytes (prohemocytes, spherulocytes, plasmatocytes, granulocytes, and oenocytoids) were described in the hemolymph of uninfected ticks, while only prohemocytes, granulocytes, and plasmatocytes were observed in fungus-infected tick females. Twenty-four hours after the fungal infection, only granulocytes and plasmatocytes were detected in the transmission electron microscopy analysis. Hemocytes from fungus-infected tick females showed several cytoplasmic vacuoles with different electron densities, and lipid droplets in close contact to low electron density vacuoles, as well as the formation of autophagosomes and subcellular material in different stages of degradation could also be observed. M. robertsii propagules were more toxic to tick hemocytes in the highest concentration tested (1.0 × 108 conidia mL-1). Interestingly, the lowest fungus concentration did not affect significantly the cell viability. Microanalysis showed that cells granules from fungus-infected and uninfected ticks had similar composition. This study addressed the first report of fungal cytotoxicity analyzing ultrastructural effects on hemocytes of R. microplus infected with entomopathogenic fungi. These results open new perspectives for the comprehension of ticks physiology and pathology, allowing the identification of new targets for the biological control.

10.
Parasitol Res ; 117(3): 793-799, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29352348

RESUMO

Despite the importance of fat body in metabolism of arthropods, studies in ticks are scarce. This study evaluated the lipid composition and activation of extracellular signal-regulated protein kinase (ERK) and AMP-activated protein kinase (AMPK) enzymes in Rhipicephalus microplus fat body after infection with different isolates of the fungus Metarhizium anisopliae sensu lato (Metschnikoff, 1879) Sorokin, 1883. The isolates CG 32, GC 112, GC 148, GC 347, and GC 629 were inoculated as viable or non-viable conidia in the ticks. The engorged females were dissected, and their fat bodies were collected 24 and 48 h after infection. The lipid composition was assessed by thin layer chromatography, and enzyme activation was detected by Western blotting with antibodies against p-AMPK and p-ERK. The study showed increased levels of triacylglycerol 24 and 48 h and fatty acid after 48 h after inoculation with different isolates of viable fungi in the tick's hemocoel. Detection of the active form of ERK was demonstrated only after inoculation with non-viable conidia of all isolates tested. The active form of AMPK, only isolate CG 112 was able to activate with viable or non-viable conidia, whereas isolates CG 32 and CG 629 were able to activate with non-viable conidia. This study provides the first report about changes in important metabolic pathways in ticks infected with entomopathogenic fungi and suggests that the lipid content is modulated by non-usual pathways. However, further studies may be necessary for a better elucidation of this interaction.


Assuntos
Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Metarhizium/fisiologia , Rhipicephalus/microbiologia , Animais , Cromatografia em Camada Fina , Corpo Adiposo/metabolismo , Feminino , Rhipicephalus/metabolismo , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA