Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176940

RESUMO

The raspberry (Rubus idaeus L.) fruit is characterized by its richness in functional molecules and high nutritional value, but the high rate of fruit softening limits its quality during postharvest. Raspberry drupelets have a particular ripening regulation, depending partially on the effect of ethylene produced from the receptacle. However, the possible role of abscisic acid (ABA) in the modulation of quality parameters during the ripening of raspberry is unclear. This study characterized the fruit quality-associated parameters and hormonal contents during fruit development in two seasons. The quality parameters showed typical changes during ripening: a drastic loss of firmness, increase in soluble solids content, loss of acidity, and turning to a red color from the large green stage to fully ripe fruit in both seasons. A significant increase in the ABA content was observed during the ripening of drupelets and receptacles, with the higher content in the receptacle of ripe and overripe stages compared to the large green stage. Moreover, identification of ABA biosynthesis-(9-cis-epoxycarotenoid dioxygenase/NCED) and ABA receptor-related genes (PYRs-like receptors) showed three genes encoding RiNCEDs and nine genes for RiPYLs. The expression level of these genes increased from the large green stage to the full-ripe stage, specifically characterized by a higher expression of RiNCED1 in the receptacle tissue. This study reports a consistent concomitant increase in the ABA content and the expression of RiNCED1, RiPYL1, and RiPYL8 during the ripening of the raspberry fruit, thus supporting the role for ABA signaling in drupelets.

2.
Molecules ; 23(6)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899259

RESUMO

Fleshy fruits are an important source of anthocyanins and proanthocyanidins (PAs), which protect plants against stress, and their consumption provides beneficial effects for human health. In strawberry fruit, the application of exogenous methyl jasmonate (MeJA) upregulates anthocyanin accumulation, although the relationship between the jasmonate pathway and anthocyanin and PA biosynthesis in fruits remains to be understood. Anthocyanin and PA accumulation is mainly regulated at the transcriptional level through R2R3-MYB and bHLH transcription factors in different plant species and organs. Here, the effect of jarin-1, a specific inhibitor of bioactive JA (jasmonoyl-isoleucine, JA-Ile) biosynthesis, on anthocyanin and PA accumulation was evaluated during strawberry (Fragaria × ananassa) fruit development using an in vitro ripening system for 48 h. Also, we observed the effects of MeJA and the application of jarin-1 to MeJA-treated fruits (MeJA + jarin-1 treatment). We assessed changes of expression levels for the JA-Ile and MeJA biosynthetic (FaJAR1.2 and FaJMT), JA signaling-related (FaMYC2 and FaJAZ1), MYB-bHLH-WD40 (MBW) complex-related (FabHLH3/33, FaMYB9/10/11, and repressor FaMYB1), and anthocyanin and PA biosynthetic (FaANS, FaUFGT, FaANR, and FaLAR) genes. In addition, the promoter region of MBW complex-related MYB genes was isolated and sequenced. We found a higher redness of strawberry fruit skin and anthocyanin content in MeJA-treated fruits with respect to jarin-1-treated ones concomitant with an upregulation of FaANS and FaUFGT genes. Inversely, the PA content was higher in jarin-1- and MeJA + jarin-1-treated than in MeJA-treated fruits. MeJA + jarin-1 treatment resulted in an upregulation of FaANR and associated transcription factors such as FabHLH33 and FaMYB9/11 along with FaJMT and FaJAR1.2. Finally, we found JA-responsive elements in the promoter regions of FaMYB1/9/10/11 genes. It is proposed that PA biosynthesis-related genes can be upregulated by the application of jarin-1 to MeJA-treated fruit, thus increasing PA accumulation in strawberry.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Fragaria/crescimento & desenvolvimento , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fragaria/efeitos dos fármacos , Fragaria/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Isoleucina/análogos & derivados , Isoleucina/biossíntese , Nucleotidiltransferases/antagonistas & inibidores , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proantocianidinas/biossíntese , Regiões Promotoras Genéticas , Regulação para Cima
3.
PLoS One ; 13(5): e0197118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29746533

RESUMO

Jasmonates (JAs) are signalling molecules involved in stress responses, development and secondary metabolism biosynthesis, although their roles in fleshy-fruit development and ripening processes are not well known. In strawberry fruit, it has been proposed that JAs could regulate the early development through the activation of the JAs biosynthesis. Moreover, it has been reported that JA treatment increases anthocyanin content in strawberry fruit involving the bioactive jasmonate biosynthesis. Nevertheless, JA signalling pathway, of which main components are the COI1-JAZ co-receptor and the MYC transcription factors (TFs), has not been characterized in strawberry until now. Here we identified and characterized the woodland strawberry (Fragaria vesca) JAZ and MYC genes as well as studied their expression during development and ripening stages in commercial strawberry (Fragaria × ananassa) fruit. We described twelve putative JAZ proteins and two MYC TFs, which showed high conservation with respect to their orthologs in Arabidopsis thaliana and in other fleshy-fruit species such as Malus × domestica, Vitis vinifera and Solanum lycopersicum as revealed by gene synteny and phylogenetic analyses. Noteworthy, their expression levels exhibited a significant decrease from fruit development to ripening stages in F. × ananassa, along with others of the JA signalling-related genes such as FaNINJA and FaJAMs, encoding for negative regulators of JA responses. Moreover, we found that main JA signalling-related genes such as FaMYC2, and FaJAZ1 are promptly induced by JA treatment at early times in F. × ananassa fruit. These results suggest the conservation of the canonical JA signalling pathway in strawberry and a possible role of this pathway in early strawberry fruit development, which also correlates negatively with the beginning of the ripening process.


Assuntos
Ciclopentanos/metabolismo , Fragaria , Regulação da Expressão Gênica de Plantas/fisiologia , Oxilipinas/metabolismo , Proteínas de Plantas , Proteínas Proto-Oncogênicas c-myc , Fragaria/genética , Fragaria/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
4.
Food Chem ; 190: 448-453, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26212995

RESUMO

Fragaria chiloensis fruit has a short postharvest life mainly due to its rapid softening. In order to improve its postharvest life, preharvest applications of methyl jasmonate (MeJA) and chitosan were evaluated during postharvest storage at room temperature. The quality and chemical parameters, and protection against decay were evaluated at 0, 24, 48 and 72 h of storage from fruits of two subsequent picks (termed as first harvest and second harvest). In general, fruits treated with MeJA and chitosan maintained higher levels of fruit firmness, anthocyanin, and showed significant delays in decay incidence compared to control fruit. MeJA-treated fruits exhibited a greater lignin content and SSC/TA ratio, and delayed decay incidences. Instead, chitosan-treated fruits presented higher antioxidant capacity and total phenol content. In short, both the elicitors were able to increase the shelf life of fruits as evidenced by the increased levels of lignin and anthocyanin, especially of the second harvest.


Assuntos
Acetatos/farmacologia , Quitosana/farmacologia , Ciclopentanos/farmacologia , Fragaria/química , Oxilipinas/farmacologia , Antocianinas/análise , Antioxidantes/análise , Frutas/química , Lignina/análise , Fenóis/análise
5.
Plant Physiol Biochem ; 70: 433-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835361

RESUMO

To investigate the role of jasmonates (JAs) in the ripening of Fragaria chiloensis fruit, two concentrations of methyl jasmonate (MeJA, 10 and 100 µM) were evaluated at 2, 5 and 9 d using an in vitro ripening system. Fruit quality parameters; the contents of anthocyanin, lignin and cell wall polymers; and the transcriptional profiles of several ripening-related genes were analyzed. MeJA accelerated fruit ripening by means of a transitory increase in the soluble solid content/titratable acidity ratio, anthocyanin accumulation and an increase in softening at day 5. The expression of several phenylpropanoid-related genes, primarily those associated with anthocyanin biosynthesis, was increased under MeJA treatment, which correlated with an increased accumulation of anthocyanin. MeJA also altered the expression profiles of some cell wall-modifying genes, namely, EG1 and XTH1, and these changes correlated with a transient reduction in the firmness of MeJA-treated fruits. MeJA-responsive elements were observed in the promoter region of the EG1 gene. MeJA also increased the expression of LOX, AOS and OPR3, genes involved in the biosynthesis of JAs, and these changes correlated with the transient activation of fruit ripening observed. Conversely, the expression of ethylene and lignin biosynthesis genes (ACS, ACO, CAD and POD27) increased in MeJA-treated fruits at day 9. The present findings suggest that JAs promote the ripening of non-climacteric fruits through their involvement in anthocyanin accumulation, cell wall modification and the biosynthesis of ethylene and JAs.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Fragaria/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genes de Plantas , Oxilipinas/metabolismo , Desenvolvimento Vegetal/genética , Acetatos/farmacologia , Antocianinas/genética , Antocianinas/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Ciclopentanos/farmacologia , Etilenos/biossíntese , Fragaria/efeitos dos fármacos , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Expressão Gênica/efeitos dos fármacos , Lignina/biossíntese , Lignina/genética , Oxilipinas/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA