Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123400, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272167

RESUMO

Environmental pollution poses risks to ecosystems. Among these risks, one finds neurotoxicity and damage to the lateral line structures of fish, such as the neuromast and its hair cells. Zebrafish (Danio rerio) is recommended as model species to be used in ecotoxicological studies and environmental biomonitoring programs aimed at assessing several biomarkers, such as ototoxicity. However, little is known about the history of and knowledge gaps on zebrafish ototoxicity. Thus, the aim of the current study is to review data available in the scientific literature about using zebrafish as animal model to assess neuromast toxicity. It must be done by analyzing the history and publication category, world production, experimental design, developmental stages, chemical classes, neuromasts and hair cell visualization methods, and zebrafish strains. Based on the results, number, survival and fluorescence intensity of neuromasts, and their hair cells, were the parameters oftentimes used to assess ototoxicity in zebrafish. The wild AB strain was the most used one, and it was followed by Tübingen and transgenic strains with GFP markers. DASPEI was the fluorescent dye most often applied as method to visualize neuromasts, and it was followed by Yo-Pro-1 and GFP transgenic lines. Antibiotics, antitumorals, metals, nanoparticles and plant extracts were the most frequent classes of chemicals used in the analyzed studies. Overall, pollutants can harm zebrafish's mechanosensory system, as well as affect their behavior and survival. Results have shown that zebrafish is a suitable model system to assess ototoxicity induced by environmental pollution.


Assuntos
Ototoxicidade , Perciformes , Animais , Peixe-Zebra , Ecossistema , Antibacterianos/toxicidade , Poluição Ambiental
2.
Mar Pollut Bull ; 164: 111970, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33517086

RESUMO

This study aimed to investigate the toxicity of innovative antifouling nanostructured biocides DCOIT and silver associated to silica nanocapsules (SiNC) on the tropical microcrustacean Mysidopsis juniae. The toxicity of the tested compounds can be summarized as follows (acute tests): DCOIT > SiNC-Ag > SiNC-DCOIT > SiNC-DCOIT-Ag > SiNC > Ag; (chronic tests): SiNC-Ag > SiNC-DCOIT-Ag > DCOIT > Ag > SiNC, although it was not possible to determine the chronic toxicity of SiNC-DCOIT. In general, our data demonstrated that mysids were more sensitive than most temperate species, and it was possible to conclude that the combination SiNC-DCOIT-Ag showed less acute toxicity in comparison to the isolated active compounds, reinforcing data obtained for species from temperate environments on the potential use of nanomaterial to reduce toxicity to non-target species. However, despite representing less risk to the environment, the compound SiNC-DCOIT-Ag is still very toxic to the non-target tropical mysid.


Assuntos
Desinfetantes , Nanoestruturas , Poluentes Químicos da Água , Animais , Crustáceos , Desinfetantes/toxicidade , Nanoestruturas/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA