Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BIS, Bol. Inst. Saúde (Impr.) ; 23(2): 115-126, 2022.
Artigo em Português | Sec. Est. Saúde SP, SESSP-ISPROD, Sec. Est. Saúde SP, SESSP-ISACERVO | ID: biblio-1525583

RESUMO

A divulgação científica no Brasil ganhou notoriedade e destaque na Internet nas últimas décadas, possibilitando o surgimento de diversas iniciativas como os podcasts. Neste artigo, abordamos o fluxo de produção do Podcast Microbiando, um projeto de extensão Universitária da Universidade Federal do Rio de Janeiro na cobertura de temas da área da Microbiologia e Imunologia de forma contextualizada. Descrevemos brevemente as etapas necessárias para a produção de um episódio do Microbiando, incluindo: rotina de reuniões, produção dos roteiros, gravação dos episódios, edição, criação de artes das capas, pós-produção do episódio e divulgação. Expusemos também algumas estatísticas do Podcast Microbiando, como: quantidade de downloads, país de origem dos ouvintes, temas mais abordados e episódios mais baixados. O Podcast Microbiando é centrado na formação acadêmica dos alunos de graduação e pós-graduação que compõem o projeto de Extensão Universitária. Além disso, a equipe do Microbiando acredita que a divulgação científica é essencial na formação de cidadãos responsáveis.


Assuntos
Comunicação e Divulgação Científica , Webcast , Alergia e Imunologia
2.
Gut Microbes ; 13(1): 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34006192

RESUMO

Humans live in symbiosis with a diverse community of microorganisms, which has evolved to carry out many specific tasks that benefit the host, including protection against invading pathogens. Within the chemical diversity of the gastrointestinal tract, small molecules likely constitute chemical cues for the communication between the microbiota and pathogens. Therefore, we sought to investigate if molecules produced by the human gut microbiota show biological activity against the human pathogen Vibrio cholerae. To probe the effects of the gut metabolome on V. cholerae, we investigated its response to small-molecule extracts from human feces, from a complex bacterial community cultivated in vitro, and from culture supernatants of Enterocloster citroniae, Bacteroides thetaiotaomicron, and Bacteroides vulgatus. Using RNA sequencing, we determined the impact of the human gut metabolome on V. cholerae global gene expression. Among the genes downregulated in the presence of the fecal extract, the most overrepresented functional category was cell motility, which accounted for 39% of repressed genes. Repression of V. cholerae motility by the fecal extract was confirmed phenotypically, and E. citroniae extracts reproduced this phenotype. A complex in vitro microbial community led to increased motility, as did extracts from B. vulgatus, a species present in this community. Accordingly, mucin penetration was also repressed by fecal and E. citroniae extracts, suggesting that the phenotypes observed may have implications for host colonization. Together with previous studies, this work shows that small molecules from the gut metabolome may have a widespread, significant impact on microbe-microbe interactions established in the gut environment.


Assuntos
Bactérias/química , Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Vibrio cholerae/crescimento & desenvolvimento , Adulto , Bactérias/classificação , Bactérias/genética , Fezes/química , Fezes/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Interações Microbianas , Plâncton/genética , Plâncton/fisiologia , Vibrio cholerae/genética , Vibrio cholerae/fisiologia
3.
Tuberculosis (Edinb) ; 126: 102043, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33370646

RESUMO

Although treatable with antibiotics, tuberculosis is a leading cause of death. Mycobacterium tuberculosis antibiotic resistance is becoming increasingly common and disease control is challenging. Conventional drug susceptibility testing takes weeks to produce results, and treatment is often initiated empirically. Therefore, new methods to determine drug susceptibility profiles are urgent. Here, we used mass-spectrometry-based metabolomics to characterize the metabolic landscape of drug-susceptible (DS), multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tuberculosis. Direct infusion mass spectrometry data showed that DS, MDR, and XDR strains have distinct metabolic profiles, which can be used to predict drug susceptibility and resistance. This was later confirmed by Ultra-High-Performance Liquid Chromatography and High-Resolution Mass Spectrometry, where we found that levels of ions presumptively identified as isoleucine, proline, hercynine, betaine, and pantothenic acid varied significantly between strains with different drug susceptibility profiles. We then confirmed the identification of proline and isoleucine and determined their absolute concentrations in bacterial extracts, and found significantly higher levels of these amino acids in DS strains, as compared to drug-resistant strains (combined MDR and XDR strains). Our results advance the current understanding of the effect of drug resistance on bacterial metabolism and open avenues for the detection of drug resistance biomarkers.


Assuntos
Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/metabolismo , Metaboloma/fisiologia , Metabolômica/métodos , Mycobacterium tuberculosis/metabolismo , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação
4.
Front Microbiol ; 10: 2003, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555238

RESUMO

During the last decades it has become increasingly clear that the microbes that live on and in humans are critical for health. The communities they form, termed microbiomes, are involved in fundamental processes such as the maturation and constant regulation of the immune system. Additionally, they constitute a strong defense barrier to invading pathogens, and are also intricately linked to nutrition. The parameters that affect the establishment and maintenance of these microbial communities are diverse, and include the genetic background, mode of birth, nutrition, hygiene, and host lifestyle in general. Here, we describe the characterization of the gut microbiome of individuals living in the Amazon, and the comparison of these microbial communities to those found in individuals from an urban, industrialized setting. Our results showed striking differences in microbial communities from these two types of populations. Additionally, we used high-throughput metabolomics to study the chemical ecology of the gut environment and found significant metabolic changes between the two populations. Although we cannot point out a single cause for the microbial and metabolic changes observed between Amazonian and urban individuals, they are likely to include dietary differences as well as diverse patterns of environmental exposure. To our knowledge, this is the first description of gut microbial and metabolic profiles in Amazonian populations, and it provides a starting point for thorough characterizations of the impact of individual environmental conditions on the human microbiome and metabolome.

5.
Bio Protoc ; 8(8): e2808, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34286025

RESUMO

The human body is colonized by vast communities of microbes, collectively known as microbiota, or microbiome. Although microbes colonize every surface of our bodies that is exposed to the external environment, the biggest collection of microbes colonizing humans and other mammals can be found in the gastrointestinal tract. Given the fact that the human gut is colonized by several hundred microbial species, our group hypothesized that the chemical diversity of this environment should be significant, and that many of the molecules present in that environment would have important signaling roles. Therefore, we devised a protocol to extract these molecules from human feces and test their signaling properties. Potentially bioactive extracts can be tested through addition to culture medium and analyses of bacterial growth and gene expression, among other properties. The protocol described herein provides an easy and rapid method for the extraction and testing of metabolites from fecal samples using Salmonella enterica as a model organism. This protocol can also be adapted to the extraction of small molecules from other matrices, such as cultured mammalian cells, tissues, body fluids, and axenic microbial cultures, and the resulting extracts can be tested against various microbial species.

6.
Appl Environ Microbiol ; 83(19)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754707

RESUMO

The human microbiome is a collection of microorganisms that inhabit every surface of the body that is exposed to the environment, generally coexisting peacefully with their host. These microbes have important functions, such as producing vitamins, aiding in maturation of the immune system, and protecting against pathogens. We have previously shown that a small-molecule extract from the human fecal microbiome has a strong repressive effect on Salmonella enterica serovar Typhimurium host cell invasion by modulating the expression of genes involved in this process. Here, we describe the characterization of this biological activity. Using a series of purification methods, we obtained fractions with biological activity and characterized them by mass spectrometry. These experiments revealed an abundance of aromatic compounds in the bioactive fraction. Selected compounds were obtained from commercial sources and tested with respect to their ability to repress the expression of hilA, the gene encoding the master regulator of invasion genes in Salmonella We found that the aromatic compound 3,4-dimethylbenzoic acid acts as a strong inhibitor of hilA expression and of invasion of cultured host cells by Salmonella Future studies should reveal the molecular details of this phenomenon, such as the signaling cascades involved in sensing this bioactive molecule.IMPORTANCE Microbes constantly sense and adapt to their environment. Often, this is achieved through the production and sensing of small extracellular molecules. The human body is colonized by complex communities of microbes, and, given their biological and chemical diversity, these ecosystems represent a platform where the production and sensing of molecules occur. In previous work, we showed that small molecules produced by microbes from the human gut can significantly impair the virulence of the enteric pathogen Salmonella enterica Here, we describe a specific compound from the human gut that produces this same effect. The results from this work not only shed light on an important biological phenomenon occurring in our bodies but also may represent an opportunity to develop drugs that can target these small-molecule interactions to protect us from enteric infections and other diseases.

7.
mBio ; 6(5): e01421-15, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26396246

RESUMO

UNLABELLED: Nontyphoidal Salmonella enterica (NTS) infections are a major burden to global public health, as they lead to diseases ranging from gastroenteritis to systemic infections and there is currently no vaccine available. Here, we describe a highly effective component vaccine against S. enterica serovar Typhimurium in both gastroenteritis and systemic murine infection models. We devised an approach to generate supernatants of S. enterica serovar Typhimurium, an organism that is highly abundant in virulence factors. Immunization of mice with this supernatant resulted in dramatic protection against a challenge with serovar Typhimurium, showing increased survival in the systemic model and decreased intestinal pathology in the gastrointestinal model. Protection correlated with specific IgA and IgG levels in the serum and specific secretory IgA levels in the feces of immunized mice. Initial characterization of the protective antigens in the bacterial culture supernatants revealed a subset of antigens that exhibited remarkable stability, a highly desirable characteristic of an effective vaccine to be used under suboptimal environmental conditions in developing countries. We were able to purify a subset of the peptides present in the supernatants and show their potential for immunization of mice against serovar Typhimurium resulting in a decreased level of colonization. This component vaccine shows promise with regard to protecting against NTS, and further work should significantly help to establish vaccines against these prevalent infections. IMPORTANCE: Salmonella enterica infections other than typhoid and paratyphoid fever are a major global health burden, as they cause high morbidity and mortality worldwide. Strategies that prevent Salmonella-related diseases are greatly needed, and there is a significant push for the development of vaccines against nontyphoidal Salmonella enterica serovars. In this work, we describe an S. Typhimurium supernatant-derived vaccine that is effective in reducing bacterial colonization in mouse models of gastroenteritis as well as invasive disease. This is a component vaccine that shows high stability to heat, a feature that is important for use under suboptimal conditions, such as those found in sub-Saharan Africa.


Assuntos
Meios de Cultura/química , Infecções por Salmonella/prevenção & controle , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Anticorpos Antibacterianos/sangue , Bacteriemia/microbiologia , Bacteriemia/prevenção & controle , Modelos Animais de Doenças , Fezes/química , Gastroenterite/microbiologia , Gastroenterite/prevenção & controle , Imunoglobulina A/sangue , Imunoglobulina A Secretora/análise , Imunoglobulina G/sangue , Intestinos/patologia , Camundongos , Infecções por Salmonella/microbiologia , Vacinas contra Salmonella/isolamento & purificação , Salmonella typhimurium/crescimento & desenvolvimento , Análise de Sobrevida , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/isolamento & purificação
8.
J Clin Microbiol ; 41(8): 3609-14, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12904363

RESUMO

This study evaluated the oxacillin susceptibilities of 152 coagulase-negative staphylococcal (CoNS) strains of 12 species by disk diffusion; agar dilution; E-test; the slide latex agglutination test (Slidex MRSA Detection test; bioMérieux S/A, Paris, France); the agar screening test with 1, 2, 4, or 6 microg of oxacillin per ml and incubation for 24 or 48 h; and detection of the mecA gene by PCR. The results revealed that the agar screening test with 4 micro g of oxacillin per ml and incubation for 48 h was superior to any single phenotype-based susceptibility assay, presenting a sensitivity and a specificity of 100% each. For the different methods evaluated, the sensitivities and specificities were as follows: for disk diffusion, 94.2 and 91.8%, respectively; for the agar dilution test 100 and 73.5%, respectively; for E-test, 100 and 71.4%, respectively; and for the slide latex agglutination test, 97.1 and 98%, respectively. A good correlation was observed between oxacillin susceptibility testing results and PCR results for Staphylococcus epidermidis, S. haemolyticus, S. hominis subsp. hominis, and all mecA-positive strains. However, at least 60% of the mecA-negative isolates of the species S. saprophyticus, S. cohnii subsp. urealyticum, S. lugdunensis, and S. sciuri were erroneously classified as oxacillin resistant by the agar dilution test. Conversely, the slide latex agglutination test presented a high sensitivity (97.1%) and a high specificity (98%) for all CoNS species. Our results demonstrated the accuracy of the agar screening test with 4 micro g of oxacillin per ml and incubation for 48 h and the slide latex agglutination test for the appropriate detection of the oxacillin susceptibilities of CoNS isolates. Both assays are technically simple and can be easier to perform in routine laboratories than PCR.


Assuntos
Antibacterianos/farmacologia , Oxacilina/farmacologia , Staphylococcus/efeitos dos fármacos , Ágar , Coagulase , Genótipo , Humanos , Testes de Fixação do Látex/métodos , Testes de Sensibilidade Microbiana/métodos , Fenótipo , Staphylococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA