Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 5(7): 3371-3383, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35732506

RESUMO

COVID-19 has resulted in more than 490 million people being infected worldwide, with over 6 million deaths by April 05th, 2022. Even though the development of safe vaccine options is an important step to reduce viral transmission and disease progression, COVID-19 cases will continue to occur, and for those cases, efficient treatment remains to be developed. Here, a drug repurposing strategy using nanotechnology is explored to develop a therapy for COVID-19 treatment. Nanoparticles (NPs) based on PLGA for fingolimod (FTY720) encapsulation show a size of ∼150 nm and high drug entrapment (∼90%). The NP (NP@FTY720) can control FTY720 release in a pH-dependent manner. Cytotoxicity assays using different cell lines show that NP@FTY720 displays less toxicity than the free drug. Flow cytometry and confocal microscopy reveal that NPs are actively internalized mostly through caveolin-mediated endocytosis and macropinocytosis pathways and co-localized with lysosomes. Finally, NP@FTY720 not only exhibits anti-SARS-CoV-2 activity at non-cytotoxic concentrations, but its biological potential for viral infection inhibition is nearly 70 times higher than that of free drug treatment. Based on these findings, the combination of drug repurposing and nanotechnology as NP@FTY720 is presented for the first time and represents a promising frontline in the fight against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Cloridrato de Fingolimode , Sistemas de Liberação de Medicamentos/métodos , Cloridrato de Fingolimode/farmacologia , Humanos , SARS-CoV-2
2.
Colloids Surf B Biointerfaces ; 184: 110523, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634799

RESUMO

Hexagonal liquid crystals and supramolecular polymers from meglumine-based supra-amphiphiles were developed as drug delivery systems to be applied on the skin. The influence of fatty acid unsaturation on the structure and mechanical properties was evaluated. Moreover, we have investigated the system biocompatibility and how the type of water could influence its bioadhesive properties. Meglumine-oleic acid (MEG-OA) was arranged as hexagonal liquid crystals at 30-70 wt% water content, probably due to its curvature and increased water solubility. Meglumine-stearic acid (MEG-SA) at 10-80 wt% water content self-assembled as a lamellar polymeric network, which can be explained by the low mobility of MEG-SA in water due to hydrophobic interactions between fatty acid chains and H-bonds between meglumine and water molecules. Both systems have shown suitable mechanical parameters and biocompatibility, making them potential candidates to encapsulate therapeutic molecules for skin delivery. Moreover, a strong positive correlation between the amount of unfrozen bound water in meglumine-based systems and the bioadhesion properties was observed. This work shows that a better understanding of the physicochemical properties of a drug delivery system is extremely important for the correlation with the desired biological response and, thus, improve the product performance for biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Meglumina/química , Pele/química , Tensoativos/química , Água/química , Adesão Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Meglumina/síntese química , Meglumina/farmacologia , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Tensoativos/síntese química , Tensoativos/farmacologia , Viscosidade
3.
Braz. J. Pharm. Sci. (Online) ; 54(1): e17314, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951904

RESUMO

Abstract Mucoadhesive nanoparticles are particularly interesting for delivery through nasal or pulmonary routes, as an approach to overcome the mucociliary clearance. Moreover, these nanoparticles are attractive for peptide and protein delivery, particularly for insulin to treat diabetes, as an alternative to conventional parenteral administration. Thus, chitosan, a cationic mucoadhesive polysaccharide found in shells of crustaceans, and the negatively-charged dextran sulfate are able to form nanoparticles through ionic condensation, representing a potential insulin carrier. Herein, chitosan/dextran sulfate nanoparticles at various ratios were prepared for insulin loading. Formulations were characterized for particle size, zeta potential, encapsulation efficiency, scanning electron microscopy, differential scanning calorimetry, and in vitro drug release. Moreover, the interaction with mucin and the cytotoxicity against a lung cell line were studied, which altogether have not been addressed before. Results evidenced that a proper selection of polyelectrolytes is necessary for smaller particle size formation and also the composition and zeta potential impact encapsulation efficiency, which is benefited by the positive charge of chitosan. Insulin remained stable after encapsulation as evidenced by calorimetric assays, and was released in a sustained manner in the first 10 h. Positively-charged nanoparticles based on chitosan/dextran-sulfate at the ratio of 6:4 successfully interacted with mucin, which is a prerequisite for delivery to mucus-containing tissues. Finally, insulin-loaded nanoparticles displayed no cytotoxicity effect against lung cells at tested concentrations, suggesting the potential for further in vivo studies.


Assuntos
Nanopartículas/química , Insulisina/análise , Dextranos , Quitosana , Diabetes Mellitus/tratamento farmacológico , Polieletrólitos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA