Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35267378

RESUMO

Aloe vera products, both in food and cosmetics, are becoming increasingly popular due to their claimed beneficial effects, which are mainly attributed to the active compound acemannan. Usually, these end products are based on powdered starting materials. High temperatures during the drying process to obtain the starting materials have several advantages, like shortening the drying time, eliminating toxic aloin and reducing bacterial contamination. Nevertheless, there are two major drawbacks: first, at temperatures of 80 °C or higher, structural changes in acemannan, especially its deacetylation (>46%), are triggered, which does not happen at lower temperatures (14% at 60 °C); secondly, a toxic principle is formed at higher temperatures, resulting in a higher cytotoxicity. Thus, two temperature-dependent but opposing effects cause with a median cytotoxic concentration of CC50 = 0.4× a peak of cytotoxicity at 80 °C; at 60 °C this cytotoxic substance is not formed and at 100 °C aloin is more readily eliminated, resulting in a CC50 = 1.1× and CC50 = 1.4×, respectively. The cytotoxic substance generated by dry heat at 80 °C is not a modified polysaccharide because its polysaccharide-enriched alcohol-insoluble fraction is with CC50 = 0.9× less cytotoxic. Moreover, this substance is polar enough to be washed away with ethanol. Additionally, when Aloe gel is heated at 80 °C under humid conditions (pasteurization), the cytotoxicity does not increase (CC50 = 1.6×). Finally, to produce powdered starting materials from Aloe gel, it is recommended to use temperatures of around 60 °C in order to preserve the acemannan structure (and thus biological activity) and the low cytotoxicity.

2.
Ultrason Sonochem ; 56: 125-133, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31101246

RESUMO

The impact of thermosonication on the functional properties and the main polysaccharides from Aloe vera was investigated. Thermal processing was used for comparison purposes. Acemannan was the predominant polysaccharide in Aloe vera juice followed by pectins. Interestingly, thermosonication promoted a minor degradation of the acetylated mannose from acemannan than thermal processing. On the other hand, the degree of methylesterification of pectins was slightly reduced as a consequence of thermosonication. Further, swelling and fat adsorption capacities were improved by thermosonication. Thus, the highest values for swelling (>150 mL/g AIR) and for fat adsorption capacity (∼120 g oil/g AIR) were observed when thermosonication was performed at 50 °C for 6 min. Moreover, high inactivation of L. plantarum (∼75%) was observed when thermosonication was carried out at 50 °C for 9 min. Interestingly, thermosonication promoted a similar color change (ΔE = 7.7) to the modification observed during pasteurization carried out at 75 °C for 15 min (ΔE = 8.2 ±â€¯0.9). Overall, these results suggested that thermosonication could be a good alternative to thermal procedures of Aloe vera juice, since not only caused minor degradation of bioactive polysaccharides but was also able to improve functional properties.


Assuntos
Aloe/química , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Polissacarídeos/química , Polissacarídeos/farmacologia , Sonicação , Temperatura , Cor , Lactobacillus plantarum/efeitos dos fármacos , Solubilidade , Água/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-30941196

RESUMO

Food industries typically use Aloe vera as concentrated (100× to 200×) and dried powders in their final products. These powders are obtained by extrusion of Aloe inner leaf gel (ILG) or Aloe whole leaf (WLP); the juice is filtered through diatomaceous earth and activated carbon before spray drying at temperatures below 70 °C. In another process, Aloe inner leaf gel was dried at ~80 °C and mashed to a powder rich in high molecular weight fibres and soluble polysaccharides (ILF). In contrast to ILG and WLP, the ILF sample was cytotoxic for the human intestinal cell line Caco-2 (CC50 = 1 g/l), even at concentrations below the recommended dose for human consumption. At lower concentrations (250 mg/l) with LPS challenged macrophage-like THP-1 cells decreased by 40% the release of the anti-inflammatory cytokine IL-10, whereas the release of the proinflammatory cytokine IL-1ß increased by 35% (compared to untreated but challenged macrophage-like THP-1 cells). Unexpectedly, under the same conditions, the less cytotoxic ILG and WLP, both samples with a lower fibre content, significantly increased (up to 2.4 times) the release of IL-10, while the concentration of IL-1ß remained unaltered and of TNFα decreased by 35%. Even more interesting is that a treatment of the ILF sample with activated carbon reduced its cytotoxicity and increased the IL-10 release (3.1 times). Based on these results, we suggest applying an activated carbon treatment on Aloe-starting products, which have high fibre content and have received high temperature treatment, in order to reduce their cytotoxicity and improve their immunomodulatory properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA