Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Mol Biol ; 43(3): e20190122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511662

RESUMO

Wickerhamomyces anomalus LBCM1105 is a yeast isolated from cachaça distillery fermentation vats, notable for exceptional glycerol consumption ability. We report its draft genome with 20.5x in-depth coverage and around 90% extension and completeness. It harbors the sequences of proteins involved in glycerol transport and metabolism.

2.
J Ind Microbiol Biotechnol ; 46(5): 709-723, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30680472

RESUMO

Wickerhamomyces anomalus strain LBCM1105 was originally isolated from the wort of cachaça (the Brazilian fermented sugarcane juice-derived Brazilian spirit) and has been shown to grow exceptionally well at high amounts of glycerol. This paramount residue from the biodiesel industry is a promising cheap carbon source for yeast biotechnology. The assessment of the physiological traits underlying the W. anomalus glycerol consumption ability in opposition to Saccharomyces cerevisiae is presented. A new WaStl1 concentrative glycerol-H+ symporter with twice the affinity of S. cerevisiae was identified. As in this yeast, WaSTL1 is repressed by glucose and derepressed/induced by glycerol but much more highly expressed. Moreover, LBCM1105 aerobically growing on glycerol was found to produce ethanol, providing a redox escape to compensate the redox imbalance at the level of cyanide-resistant respiration (CRR) and glycerol 3P shuttle. This work is critical for understanding the utilization of glycerol by non-Saccharomyces yeasts being indispensable to consider their industrial application feeding on biodiesel residue.


Assuntos
Cianetos/química , Etanol/química , Glicerol/química , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Aerobiose , Bebidas Alcoólicas , Biocombustíveis , Biomassa , Reatores Biológicos , Brasil , Candida , Cromatografia Líquida de Alta Pressão , Fermentação , Tecnologia de Alimentos , Glucose , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Cinética , Prótons
3.
FEMS Yeast Res ; 18(1)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177424

RESUMO

In yeast, as in other eukaryotes, calcium plays an essential role in signaling transduction to regulate different processes. Many pieces of evidence suggest that glucose-induced activation of plasma membrane H+-ATPase, essential for yeast physiology, is related to calcium signaling. Until now, no protein that could be regulated by calcium in this context has been identified. Lpx1p, a serine-protease that is also involved in the glucose-induced activation of the plasma membrane H+-ATPase, could be a candidate to respond to intracellular calcium signaling involved in this process. In this work, by using different approaches, we obtained many pieces of evidence suggesting that the requirement of calcium signaling for activation of the plasma membrane H+-ATPase is due to its requirement for activation of Lpx1p. According to the current model, activation of Lpx1p would cause hydrolysis of an acetylated tubulin that maintains the plasma membrane H+-ATPase in an inactive state. Therefore, after its activation, Lpx1p would hydrolyze the acetylated tubulin making the plasma membrane H+-ATPase accessible for phosphorylation by at least one protein kinase.


Assuntos
Sinalização do Cálcio , Membrana Celular/metabolismo , Glucose/metabolismo , Fosfolipases A/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA