Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 148: 106220, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944227

RESUMO

The present work aims to investigate whether it is possible to identify and quantify the contributions of the interstitial fluid and the solid skeleton to the overall time-dependent behavior of tendons based on a single mechanical test. For this purpose, the capabilities of three different time-dependent models (a viscoelastic, a poroelastic and a poroviscoelastic) were investigated in the modeling of the experimental behavior obtained from semi-confined compression with stress relaxation tests transverse to collagen fibers. The main achieved result points out that the poroviscoelastic model was the only one capable to characterize both the experimental responses of the force and volume changes of the tissue samples. Moreover, further analysis of this model shows that while the kinematics of the sample are mainly governed by the fluid flow (pore pressure contribution of the model), the behavior intrinsically associated with the viscoelastic solid skeleton makes a significant contribution to the experimental force response. This study reinforces the importance of taking both the experimental kinematics and kinetics of tendon tissues into account during the constitutive characterization procedure.


Assuntos
Modelos Biológicos , Tendões , Elasticidade , Estresse Mecânico , Viscosidade
2.
J Mech Behav Biomed Mater ; 110: 103852, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957178

RESUMO

Second-generation stent-grafts (SGs) have addressed many of the mechanical problems reported for first-generation endoprostheses, such as graft tear and stent rupture; however, suture wear and detachment due to pulsatile fatigue remains an issue. Numerical studies on the mechanical behavior of these endoprostheses usually model the attachment between stents and graft as a continuous ''tie'' constraint, which does not provide information on the mechanical loads acting on individual sutures. This paper presents a suitable approach for Finite Element (FE) simulations of SGs which allows for a qualitative evaluation of the loads acting on sutures. Attachment between stents and graft is modeled as rigid beams at discrete locations of the endoprostheses, and the reaction forces on the beams are analyzed. This modeling strategy is employed for four different SG models (two Z-stented commercial models and two circular-stented models) subjected to a severe 180° U-bend, followed by intraluminal pressurization. Results show that, for all models, the majority of sutures is experiencing fluctuating forces within a cardiac cycle (between 80 and 120 mmHg), which points to pulsatile fatigue as potential failure mode. In addition, the highest loads are concentrated in kinks and, for Z-stented models, at the apexes of stents. Moreover, suture loads for circular-stented models are lower than for Z-stented models, indicating better resistance to suture detachment. All these observations are in line with experimental results published in the literature, and, therefore, the procedure herein proposed may serve as a valuable tool in the development of new SG models with better suture resistance to pulsatile wear and fatigue.


Assuntos
Prótese Vascular , Stents , Fenômenos Mecânicos , Suturas
3.
J Biomech ; 87: 120-126, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30904336

RESUMO

The transverse deformations of tendons assessed in tensile tests seems to constitute a controversial issue in literature. On the one hand, large positive variations of the Poisson's ratio have been reported, indicating volume reduction under tensile states. On the other hand, negative values were also observed, pointing out an auxetic material response. Based on these experimental observations, the following question is raised: Are these large and discrepant transverse deformations intrinsically related to the constitutive response of tendons or they result from artifacts of the mechanical test setup? In order to provide further insights to this question, an experimental and numerical study on the transverse kinematics of tendons was carried out. Tensile experiments were performed in branches of deep digital flexor tendons of domestic porcine, where the transverse displacements were measured by two high-speed, high-accuracy optical digital micrometers placed transversely to one another. Aiming at a better understanding of the effects of the mechanical test setup in the transverse measurements, a three-dimensional finite element model is proposed to resemble the tensile experiment. The main achieved results strongly support the following hypotheses regarding tensile tests of tendons: the clamping region considerably affects the kinematics of the specimen even at a large distance from the clamps; the transverse deformations are mainly ruled by stiff fibers embedded in a soft matrix; the generalization of the Poisson's ratio to draw conclusions about changes in volume of tendons may lead to misinterpretations.


Assuntos
Modelos Biológicos , Tendões/fisiologia , Resistência à Tração/fisiologia , Animais , Fenômenos Biomecânicos , Elasticidade , Estresse Mecânico , Suínos
4.
J Mech Behav Biomed Mater ; 91: 131-138, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30579110

RESUMO

Present study provides a numerical investigation on multiscale boundary conditions in the computational homogenization of a representative volume element (RVE) of tendon fascicles. A three-dimensional hexagonal-helicoidal finite element RVE composed of two material phases (collagen fibers and cells) and three finite strain viscoelastic models (collagen fibrils, matrix of fibers and cells) compose the multiscale model. Due to the unusual helical geometry of the RVE, the performance of four multiscale boundary conditions is evaluated: the linear boundary displacements model, the minimally constrained model and two mixed boundary conditions allying characteristics of both, linear and minimal models. Numerical results concerning microscopic kinematic fields and macroscopic stress-strain curves point out that one of the mixed models is able to predict the expected multiscale mechanics of the RVE, presenting sound agreement with experimental facts reported in literature, for example: characteristic non-linear shape of the stress-strain curves; macroscopic energy loss by hysteresis; axial rotation of fascicles observed in tensile tests; collagen fibrils are the main load-bearing components of tendons; cells contribute neither to the stiffness nor to the macroscopic energy loss. Moreover, the multiscale model provides important insights on the micromechanics of tendon fascicles, predicting a non-homogeneous and relevant strain localization on cells, even under physiological macroscopic strain amplitudes.


Assuntos
Fenômenos Mecânicos , Modelos Biológicos , Tendões/citologia , Tendões/metabolismo , Fenômenos Biomecânicos , Colágeno/metabolismo , Análise de Elementos Finitos , Estresse Mecânico
5.
Int J Biomater ; 2017: 1256537, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29056968

RESUMO

The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.

6.
Int J Biomater ; 2017: 6435076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848605

RESUMO

Two groups of PLGA specimens with different geometries (notched and unnotched) were injection molded under two melting temperatures and flow rates. The mechanical properties, morphology at the fracture surface, and residual stresses were evaluated for both processing conditions. The morphology of the fractured surfaces for both specimens showed brittle and smooth fracture features for the majority of the specimens. Fracture images of the notched specimens suggest that the surface failure mechanisms are different from the core failure. Polarized light techniques indicated birefringence in all specimens, especially those molded with lower temperature, which suggests residual stress due to rapid solidification. DSC analysis confirmed the existence of residual stress in all PLGA specimens. The specimens molded using the lower injection temperature and the low flow rate presented lower loss tangent values according to the DMA and higher residual stress as shown by DSC, and the photoelastic analysis showed extensive birefringence.

7.
J Biomech ; 54: 49-57, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28238424

RESUMO

Several constitutive models for fibrous soft tissues used in literature provide a completely isotropic response when fibers are compressed. However, recent experimental investigations confirm the expectation that tendons behave anisotropically during compression tests. Motivated by these facts, the present manuscript presents an appropriate choice of hyperelastic potentials able to predict the coupled mechanical behaviors of tendons under both tensile and compressive loads with a relatively small number of material parameters. The high stiffness of tendons under tensile tests is handled by a transversely isotropic model while the coupled compressive response is modeled by means of a Fung-type potential in terms of Seth-Hill's generalized strain tensors. In present study the logarithm strain measure is used instead of the usually employed Green-Lagrange strain. After a parameter identification procedure, the resulting model showed ability to satisfactorily reproduce the experimental data. Details on the analytical material tangent modulus are provided. Present results will then enhance further researches related to tendon dissipative effects and numerical multiscale investigations.


Assuntos
Modelos Biológicos , Tendões/fisiologia , Animais , Anisotropia , Cavalos , Humanos , Pressão , Ratos , Estresse Mecânico
8.
Res. Biomed. Eng. (Online) ; 32(1): 28-34, Jan.-Mar. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-829459

RESUMO

Abstract Introduction The method of graft fixation is critical in anterior cruciate ligament (ACL) reconstruction surgery. Success of surgery is totally dependent on the ability of the implant to secure the graft inside the bone tunnel until complete graft integration. The principle of EndoButton is based on the cortical suspension of the graft. The Cross-Pin is based on graft expansion. The aim of this study was to evaluate the biomechanical performance of EndoButton and Bio Cross-Pin to fix the hamstring graft at femoral side of porcine knee joints and evaluate whether they are able to support of loading applied on graft during immediate post-operative tasks. Methods Fourteen ACL reconstructions were carried out in porcine femurs fixing superficial flexor tendons with Titanium EndoButton (n = 7) and with 6 × 50 mm HA/PLLA Bio Cross-Pin (n = 7). A cyclic loading test was applied with 50-250 N of tensile force at 1 Hz for 1000 cycles. The displacement was measured at 20, 100, 500 and 1000 load cycles to quantify the slippage of the graft during the test. Single-cycle load-to-failure test was performed at 50 N/mm to measure fixation strength. Results The laxity during cyclic loading and the displacement to failure during single-cycle test were lower for the Bio Cross-Pin fixation (8.21 ± 1.72 mm) than the EndoButton (11.20 ± 2.00 mm). The Bio Cross-Pin (112.22 ± 21.20 N.mm–1) was significantly stiffer than the EndoButton fixation (60.50 ±10.38 N.mm–1). There was no significant difference between Bio Cross-Pin (failure loading: 758.29 ± 188.05 N; yield loading: 713.67 ± 192.56 N) and EndoButton strength (failure loading: 672.52 ± 66.56 N; yield loading: 599.91 ± 59.64 N). Both are able to support the immediate post-operative loading applied (445 N). Conclusion The results obtained in this experiment indicate that the Bio Cross-Pin technique promote stiffer fixation during cyclic loading as compared with EndoButton. Both techniques are able to support the immediate post-operative loading applied.

9.
Res. Biomed. Eng. (Online) ; 31(1): 56-61, Jan-Mar/2015. tab, graf
Artigo em Inglês | LILACS | ID: biblio-829416

RESUMO

Introduction The rupture of the anterior cruciate ligament (ACL) is the most common type of knee injury. Reconstructive surgery is the ‘gold standard’ treatment. During the immediate post-operative period, the fixation of the graft is entirely dependent on the ability of the grafted implant to be secured inside the bone tunnel under the cyclical loads associated with daily tasks. Poor fixation can lead to graft slippage, thus impairing the healing and integration of the graft. The aim of this study was to evaluate the biomechanical performance of tendon graft fixation devices with metallic and bioabsorbable interference screws. Methods Twenty ACL reconstructions were carried out in porcine tibias using deep flexor tendons to fix 9 × 20 mm metallic (n=10) and PLLA 70/30 bioabsorbable screws (n=10). To verify the ability of a construct to resist immediate postoperative (PO) rehabilitation protocols for immediate load bearing, a cyclic loading test was applied with 50-250 N of tensile force at 1 Hz for 1000 cycles, and the displacement was measured at 10, 50, 100, 500 and 1000 load cycles to quantify the slippage of the graft during the test. After the cyclic loading test, a single-cycle load-to-failure test was applied. Results The slippage of the graft using metallic screws did not differ (P = 0.616) from that observed when using bioabsorbable screws. Conclusion The results obtained in this experiment indicate that metallic screws may promote a similar amount of graft slippage during low cyclic loading as bioabsorbable screws. Additionally, there was no difference in the biomechanical performance of these two types of screws during high failure loads.

10.
Acta ortop. bras ; Acta ortop. bras;17(2): 18-23, 2009. ilus, graf, tab
Artigo em Português | LILACS | ID: lil-515942

RESUMO

OBJETIVO: Por ser a articulação mecanicamente mais solicitada de nossa estrutura e pelo grande número de lesões associadas, motivaram a construção de um modelo tridimensional da articulação do joelho humano para simular a cinemática da articulação e obter as solicitações mecânicas nos principais ligamentos durante o movimento de flexão do joelho. Essas informações podem futuramente ser empregada como ferramenta de apoio à decisão médica em ortopedia, fornecendo subsídios na escolha do procedimento cirúrgico. MÉTODOS: Método dos Elementos Finitos foi utilizado para construir um modelo biomecânico, tridimensional, da articulação do joelho. Nesse modelo com seis graus de liberdade é aplicado movimento de flexão/extensão sendo os demais cinco graus de liberdade governados pelas interações entre os componentes da articulares. RESULTADOS: Foram obtidas informações dos movimentos, das rotações interna/externa e adução/abdução, das translações anterior/posterior, lateral/medial e superior/inferior e dos esforços nos quatro principais ligamentos articulares, no decorrer de um amplo movimento de flexão/extensão. Estes valores foram comparados, de forma qualitativa, com valores equivalentes obtidos na literatura. CONCLUSÃO: A análise de resultados permitiu observar que vários aspectos cinemáticos são satisfatoriamente reproduzidos. A pré-carga inicial dos ligamentos e o posicionamento das inserções ligamentares no modelo mostraram-se variáveis relevantes nos resultados.


OBJECTIVE: The knee joint is the part of our structure upon which most mechanical demands are placed and a large number of lesions are associated to it. These factors motivated the construction of a three-dimensional model of the human knee joint in order to simulate joint kinematics and obtain the mechanical demands on the main ligaments during knee flexion movements. METHODS: The finite elements method was used to build a three-dimensional, biomechanical model of the knee joint. In this model with six degrees of freedom, the flexion/extension movement is applied, while the other five degrees of freedom are governed by the interactions between joint components. RESULTS: Data was collected on the movements, on the internal/external and adduction/ abduction rotations, on the anterior/posterior, lateral/medial and upper/lower translations, and on the forces acting upon the four main joint ligaments, during a wide flexion/extension movement. These values were qualitatively compared with comparable values available in the literature. CONCLUSIONS: It was observed through an analysis of the results that several kinematic aspects are satisfactorily reproduced. The initial pre-load of the ligaments and the positioning of the ligament insertions in the model were shown to be relevant variables in the results.


Assuntos
Humanos , Análise de Elementos Finitos , Articulação do Joelho/anatomia & histologia , Fenômenos Biomecânicos , Imageamento Tridimensional , Modelos Anatômicos , Joelho/anatomia & histologia , Joelho/fisiologia , Análise Numérica Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA