Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 50(3): 603-612, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30982213

RESUMO

Herein, the class II hydrophobin gene HFBII-4 was cloned from the biocontrol agent Trichoderma asperellum ACCC30536 and recombinant rHFBII-4 was expressed in Pichia pastoris GS115. Treatment of Populus davidiana × P. alba var. pyramidalis (PdPap poplar) with rHFBII-4 altered the expression levels of genes in the auxin, salicylic acid (SA), and jasmonic acid (JA) signal transduction pathways. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) enzyme activities were induced with rHFBII-4. Evans Blue and nitro blue tetrazolium (NBT) staining indicated that cell membrane permeability and reactive oxygen species were lower in the leaves of plants treated with rHFBII-4. The chlorophyll content was higher than that of control at 2-5 days after treatment. Furthermore, poplar seedlings were inoculated with Alternaria alternata, disease symptoms were observed. The diseased area was smaller in leaves induced with rHFBII-4 compared with control. In summary, rHFBII-4 enhances resistance to A. alternata.


Assuntos
Proteínas Fúngicas/farmacologia , Doenças das Plantas/microbiologia , Populus/efeitos dos fármacos , Populus/imunologia , Trichoderma/metabolismo , Alternaria/fisiologia , Ciclopentanos/imunologia , Resistência à Doença , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Oxilipinas/imunologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Populus/microbiologia , Trichoderma/química , Trichoderma/genética
2.
Braz J Microbiol ; 49 Suppl 1: 236-245, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29691191

RESUMO

Salinity and alkalinity are major abiotic stresses that limit growth and development of poplar. We investigated biocontrol potential of saline- and alkaline-tolerant mutants of Trichoderma asperellum to mediate the effects of salinity or alkalinity stresses on Populus davidiana×P. alba var. pyramidalis (PdPap poplar) seedlings. A T-DNA insertion mutant library of T. asperellum was constructed using an Agrobacterium tumefaciens mediated transformation system; this process yielded sixty five positive transformants (T1-T65). The salinity tolerant mutant, T59, grew in Potato Dextrose Agar (PDA) containing up to 10% (1709.40mM) NaCl. Under NaCl-rich conditions, T59 was most effective in inhibiting Alternaria alternata (52.00%). The alkalinity tolerant mutants, T3 and T5, grew in PDA containing up to 0.4% (47.62mM) NaHCO3. The ability of the T3 and T5 mutants to inhibit Fusarium oxysporum declined as NaHCO3 concentrations increased. NaHCO3 tolerance of the PdPap seedlings improved following treatment with the spores of the WT, T3, and T5 strains. The salinity tolerant mutant (T59) and two alkalinity tolerant mutants (T3 and T5) generated in this study can be applied to decrease the incidence of pathogenic fungi infection under saline or alkaline stress.


Assuntos
Álcalis/metabolismo , Alternaria/fisiologia , Antibiose , Doenças das Plantas/microbiologia , Populus/crescimento & desenvolvimento , Cloreto de Sódio/metabolismo , Trichoderma/fisiologia , Doenças das Plantas/prevenção & controle , Populus/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Estresse Fisiológico , Trichoderma/genética
3.
Braz. j. microbiol ; Braz. j. microbiol;49(supl.1): 236-245, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-974331

RESUMO

ABSTRACT Salinity and alkalinity are major abiotic stresses that limit growth and development of poplar. We investigated biocontrol potential of saline- and alkaline-tolerant mutants of Trichoderma asperellum to mediate the effects of salinity or alkalinity stresses on Populus davidiana × P. alba var. pyramidalis (PdPap poplar) seedlings. A T-DNA insertion mutant library of T. asperellum was constructed using an Agrobacterium tumefaciens mediated transformation system; this process yielded sixty five positive transformants (T1-T65). The salinity tolerant mutant, T59, grew in Potato Dextrose Agar (PDA) containing up to 10% (1709.40 mM) NaCl. Under NaCl-rich conditions, T59 was most effective in inhibiting Alternaria alternata (52.00%). The alkalinity tolerant mutants, T3 and T5, grew in PDA containing up to 0.4% (47.62 mM) NaHCO3. The ability of the T3 and T5 mutants to inhibit Fusarium oxysporum declined as NaHCO3 concentrations increased. NaHCO3 tolerance of the PdPap seedlings improved following treatment with the spores of the WT, T3, and T5 strains. The salinity tolerant mutant (T59) and two alkalinity tolerant mutants (T3 and T5) generated in this study can be applied to decrease the incidence of pathogenic fungi infection under saline or alkaline stress.


Assuntos
Doenças das Plantas/microbiologia , Trichoderma/fisiologia , Cloreto de Sódio/metabolismo , Populus/crescimento & desenvolvimento , Álcalis/metabolismo , Alternaria/fisiologia , Antibiose , Doenças das Plantas/prevenção & controle , Estresse Fisiológico , Trichoderma/genética , Populus/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
4.
Braz. j. microbiol ; Braz. j. microbiol;492018.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469665

RESUMO

ABSTRACT Salinity and alkalinity are major abiotic stresses that limit growth and development of poplar. We investigated biocontrol potential of saline- and alkaline-tolerant mutants of Trichoderma asperellum to mediate the effects of salinity or alkalinity stresses on Populus davidiana × P. alba var. pyramidalis (PdPap poplar) seedlings. A T-DNA insertion mutant library of T. asperellum was constructed using an Agrobacterium tumefaciens mediated transformation system; this process yielded sixty five positive transformants (T1T65). The salinity tolerant mutant, T59, grew in Potato Dextrose Agar (PDA) containing up to 10% (1709.40 mM) NaCl. Under NaCl-rich conditions, T59 was most effective in inhibiting Alternaria alternata (52.00%). The alkalinity tolerant mutants, T3 and T5, grew in PDA containing up to 0.4% (47.62 mM) NaHCO3. The ability of the T3 and T5 mutants to inhibit Fusarium oxysporum declined as NaHCO3 concentrations increased. NaHCO3 tolerance of the PdPap seedlings improved following treatment with the spores of the WT, T3, and T5 strains. The salinity tolerant mutant (T59) and two alkalinity tolerant mutants (T3 and T5) generated in this study can be applied to decrease the incidence of pathogenic fungi infection under saline or alkaline stress.

5.
Braz. J. Microbiol. ; 49(supl 1): 236-245, 2018. ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-17598

RESUMO

Salinity and alkalinity are major abiotic stresses that limit growth and development of poplar. We investigated biocontrol potential of saline- and alkaline-tolerant mutants of Trichoderma asperellum to mediate the effects of salinity or alkalinity stresses on Populus davidiana × P. alba var. pyramidalis (PdPap poplar) seedlings. A T-DNA insertion mutant library of T. asperellum was constructed using an Agrobacterium tumefaciens mediated transformation system; this process yielded sixty five positive transformants (T1–T65). The salinity tolerant mutant, T59, grew in Potato Dextrose Agar (PDA) containing up to 10% (1709.40 mM) NaCl. Under NaCl-rich conditions, T59 was most effective in inhibiting Alternaria alternata (52.00%). The alkalinity tolerant mutants, T3 and T5, grew in PDA containing up to 0.4% (47.62 mM) NaHCO3. The ability of the T3 and T5 mutants to inhibit Fusarium oxysporum declined as NaHCO3 concentrations increased. NaHCO3 tolerance of the PdPap seedlings improved following treatment with the spores of the WT, T3, and T5 strains. The salinity tolerant mutant (T59) and two alkalinity tolerant mutants (T3 and T5) generated in this study can be applied to decrease the incidence of pathogenic fungi infection under saline or alkaline stress.(AU)

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA