Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(8): 492, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066907

RESUMO

The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.


Assuntos
Burkholderia , Técnicas Eletroquímicas , Eletrodos , Grafite , Hidroxibutiratos , Polímeros Molecularmente Impressos , Poliésteres , Grafite/química , Poliésteres/química , Hidroxibutiratos/química , Burkholderia/química , Burkholderia/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Polímeros Molecularmente Impressos/química , Limite de Detecção , Oxirredução , Poli-Hidroxibutiratos
2.
Talanta ; 272: 125778, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364566

RESUMO

Rhamnolipids (RHLs) are promising biosurfactants with important applications in several industrial segments. These compounds are produced through biotechnological processes using the bacteria Pseudomonas Aeruginosa. The main methods of analyzing this compound are based on chromatographic techniques. In this study, an electrochemical sensor based on a platform modified with reduced graphene oxide, manganese nanoparticles covered with a molecularly imprinted poly (L-Ser) film was used as an alternative method to quantify RHL through its hydrolysis product, acid 3-hydroxydecanoic acid (3-HDA). The proposed sensor was characterized microscopically, spectroscopically and electrochemically. Under optimized experimental conditions, an analytical curve was obtained in the linear concentration range from 2.0 × 10-12 mol L-1 to 1.0 × 10-10 mol L-1. The values estimated of LOD, LOQ and AS were 8.3 × 10-13 mol L-1, 2.7 × 10-12 mol L-1and 1.3 × 107 A L mol-1, respectively. GCE/rGO/MnNPs/L-Ser@MIP exhibits excellent selectivity, repeatability, and high stability for the detection of 3-HDA. Furthermore, the developed method was successfully applied to the recognition of the hydrolysis product (3-HDA) of RHLs obtained from guava agro-waste. Statistical comparison between GCE/rGO/MnNPs/L-Ser@MIP and HPLC method confirms the accuracy of the electrochemical sensor within a 95% confidence interval.


Assuntos
Glicolipídeos , Grafite , Impressão Molecular , Nanopartículas , Manganês , Polímeros/química , Limite de Detecção , Grafite/química , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA