Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 126: 108674, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984192

RESUMO

Petroleum-based plastics dominate everyday life, necessitating the exploration of natural polymers as alternatives. Starch, abundant and biodegradable, is a promising raw material. However, understanding the molecular mechanisms underlying starch plasticization has proven challenging. To address this, we employ molecular dynamics simulations, focusing on amylose as a model. Our comprehensive evaluation revealed that chain size affects solubility, temperature influenced diffusivity and elastic properties, and oleic acid expressed potential as an alternative plasticizer. Furthermore, blending glycerol or oleic acid with water suggested the enhancement amylose's elasticity. These findings contribute to the design of sustainable and improved biodegradable plastics.


Assuntos
Plásticos Biodegradáveis , Amido , Amilose , Ácido Oleico , Glicerol , Simulação de Dinâmica Molecular , Plásticos
2.
J Chem Phys ; 153(23): 234901, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33353329

RESUMO

The Ewald method has been the cornerstone in molecular simulations for modeling electrostatic interactions of charge-stabilized many-body systems. In the late 1990s, Wolf and collaborators developed an alternative route to describe the long-range nature of electrostatic interactions; from a computational perspective, this method provides a more efficient and straightforward way to implement long-range electrostatic interactions than the Ewald method. Despite these advantages, the validity of the Wolf potential to account for the electrostatic contribution in charged fluids remains controversial. To alleviate this situation, in this contribution, we implement the Wolf summation method to both electrolyte solutions and charged colloids with moderate size and charge asymmetries in order to assess the accuracy and validity of the method. To this end, we verify that the proper selection of parameters within the Wolf method leads to results that are in good agreement with those obtained through the standard Ewald method and the theory of integral equations of simple liquids within the so-called hypernetted chain approximation. Furthermore, we show that the results obtained with the original Wolf method do satisfy the moment conditions described by the Stillinger-Lovett sum rules, which are directly related to the local electroneutrality condition and the electrostatic screening in the Debye-Hückel regime. Hence, the fact that the solution provided by the Wolf method satisfies the first and second moments of Stillinger-Lovett proves, for the first time, the reliability of the method to correctly incorporate the electrostatic contribution in charge-stabilized fluids. This makes the Wolf method a powerful alternative compared to more demanding computational approaches.

3.
Int J Mol Sci ; 20(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783519

RESUMO

The viral capsid is a macromolecular complex formed by a defined number of self-assembled proteins, which, in many cases, are biopolymers with an identical amino acid sequence. Specific protein-protein interactions (PPI) drive the capsid self-assembly process, leading to several distinct protein interfaces. Following the PPI hot spot hypothesis, we present a conservation-based methodology to identify those interface residues hypothesized to be crucial elements on the self-assembly and thermodynamic stability of the capsid. We validate the predictions through a rigorous physical framework which integrates molecular dynamics simulations and free energy calculations by Umbrella sampling and the potential of mean force using an all-atom molecular representation of the capsid proteins of an icosahedral virus in an explicit solvent. Our results show that a single mutation in any of the structure-conserved hot spots significantly perturbs the quaternary protein-protein interaction, decreasing the absolute value of the binding free energy, without altering the protein's secondary nor tertiary structure. Our conservation-based hot spot prediction methodology can lead to strategies to rationally modulate the capsid's thermodynamic properties.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/fisiologia , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Mutação/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Conformação Proteica , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Termodinâmica
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041401, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599152

RESUMO

In this work the renormalized jellium model of colloidal suspensions, originally proposed by Trizac and Levin [Phys. Rev. E 69, 031403 (2004)], is extended to study mechanisms of charge renormalization in binary mixtures of charged colloids. We here apply our recent reformulation that introduces the requirement of self-consistency directly into the Poisson-Boltzmann equation, i.e., the background charge is explicitly replaced by the effective one, thus facilitating the whole charge renormalization scheme. We briefly discuss the reformulated model for monodisperse charged suspensions composed of either spheres or rods. In particular, we put emphasis on the effects of the surface charge variation, mixture composition, and particle size on the charge regulation of charge-stabilized colloidal suspensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA