Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 238(12): 2931-2945, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33068173

RESUMO

Postural instability is a major disabling feature in Parkinson's disease (PD). We quantified the organization of leg and trunk muscles into synergies stabilizing the center of pressure (COP) coordinate within the uncontrolled manifold hypothesis in levodopa-naïve patients with PD and age-matched control subjects. The main hypothesis was that changes in the synergic control of posture are present early in the PD process even before levodopa exposure. Eleven levodopa-naïve patients with PD and 11 healthy controls performed whole-body cyclical voluntary sway tasks and a self-initiated load-release task during standing on a force plate. Surface electromyographic activity in 13 muscles on the right side of the body was analyzed to identify muscle groups with parallel scaling of activation levels (M-modes). Data were collected both before ("off-drug") and approximately 60 min after the first dose of 25/100 carbidopa/levodopa ("on-drug"). COP-stabilizing synergies were quantified for the load-release task. Levodopa-naïve patients with PD showed no COP-stabilizing synergy "off-drug", whereas controls showed posture-stabilizing multi-M-mode synergy. "On-drug", patients with PD demonstrated a significant increase in the synergy index. There were no significant drug effects on the M-mode composition, anticipatory postural adjustments, indices of motor equivalence, or indices of COP variability. The results suggest that levodopa-naïve patients with PD already show impaired posture-stabilizing multi-muscle synergies that may be used as promising behavioral biomarkers for emerging postural disorders in PD. Moreover, levodopa modified synergy metrics differently in these levodopa-naïve patients compared to a previous study of patients on chronic antiparkinsonian medications (Falaki et al. in J Electromyogr Kinesiol 33:20-26, 2017a), suggesting different neurocircuitry involvement.


Assuntos
Levodopa , Doença de Parkinson , Humanos , Músculo Esquelético , Doença de Parkinson/tratamento farmacológico , Equilíbrio Postural , Postura
2.
Exp Brain Res ; 237(5): 1361-1374, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30877340

RESUMO

We examined the control of postural stability in preparation to a discrete, quick whole-body sway toward a target and back to the initial position. Several predictions were tested based on the theory of control with referent body orientation and the notion of multi-muscle synergies stabilizing center of pressure (COP) coordinate. Healthy, young adults performed fast, discrete whole-body motion forward-and-back and backward-and-back under visual feedback on the COP. We used two methods to assess COP stability, analysis of inter-trial variance and analysis of motor equivalence in the muscle activation space. Actions were always preceded by COP counter-movements. Backward COP shifts were faster, and the indices of multi-muscle synergies stabilizing COP were higher prior to those actions. Patterns of muscle activation at the motion onset supported the idea of a gradual shift in the referent body orientation. Prior to the backward movements, there was a trend toward higher muscle co-activation, compared to reciprocal activation. We found strong correlations between the sets of indices of motor equivalence and those of inter-trial variance. Overall, the results support the theory of control with referent coordinates and the idea of multi-muscle synergies stabilizing posture by confirming a number of non-trivial predictions based on these concepts. The findings favor using indices of motor equivalence in clinical studies to minimize the number of trials performed by each subject.


Assuntos
Fenômenos Biomecânicos/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Eletromiografia , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA