Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(30): 20126-34, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27110833

RESUMO

The excited state lifetimes of DNA bases are often very short due to very efficient non-radiative processes assigned to the ππ*-nπ* coupling. A set of protonated aromatic diazine molecules (pyridazine, pyrimidine and pyrazine C4H5N2(+)) and protonated pyrimidine DNA bases (cytosine, uracil and thymine), as well as the protonated pyridine (C5H6N(+)), have been investigated. For all these molecules except one tautomer of protonated uracil (enol-keto), electronic spectroscopy exhibits vibrational line broadening. Excited state geometry optimization at the CC2 level has been conducted to find out whether the excited state lifetimes measured from line broadening can be correlated to the calculated ordering of the ππ* and nπ* states and the ππ*-nπ* energy gap. The short lifetimes, observed when one nitrogen atom of the ring is not protonated, can be rationalized by relaxation of the ππ* state to the nπ* state or directly to the electronic ground state through ring puckering.

2.
J Chem Phys ; 143(4): 041103, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26233098

RESUMO

The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag(+)) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg(+) complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt(+)) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag(+), as confirmed by ab initio calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag(+) could have important implications as point mutation of DNA upon sunlight exposition.


Assuntos
Citosina/química , DNA/química , Metais/química , Prata/química , DNA/efeitos da radiação , Elétrons , Mutação Puntual/efeitos da radiação , Teoria Quântica , Luz Solar/efeitos adversos , Termodinâmica
3.
Phys Chem Chem Phys ; 16(22): 10643-50, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24752466

RESUMO

The very fast relaxation of the excited states to the ground state in DNA/RNA bases is a necessary process to ensure the photostability of DNA and its rate is highly sensitive to the tautomeric form of the bases. Protonation of the bases plays a crucial role in many biochemical and mutagenic processes and it can result in alternative tautomeric structures, thus making important the knowledge of the properties of protonated DNA/RNA bases. We report here the photofragmentation spectra of the five protonated DNA/RNA bases. In most of the cases, the spectra exhibit well resolved vibrational structures, with broad bands associated with very short excited state lifetimes. The similarity between the electronic properties, e.g. excitation energy and very short excited state lifetimes for the canonical tautomers of protonated and neutral DNA bases, suggests that the former could also play an important role in the photostability mechanism of DNA.


Assuntos
DNA/química , Prótons , Teoria Quântica , RNA/química
4.
J Phys Chem Lett ; 5(13): 2295-301, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26279549

RESUMO

Recently, DNA molecules have received great attention because of their potential applications in material science. One interesting example is the production of highly fluorescent and tunable DNA-Agn clusters with cytosine (C)-rich DNA strands. Here, we report the UV photofragmentation spectra of gas-phase cytosine···Ag(+)···cytosine (C2Ag(+)) and cytosine···H(+)···cytosine (C2H(+)) complexes together with theoretical calculations. In both cases, the excitation energy does not differ significantly from that of isolated cytosine or protonated cytosine, indicating that the excitation takes place on the DNA base. However, the excited-state lifetime of the C2H(+) (τ = 85 fs), estimated from the bandwidth of the spectrum, is at least 2 orders of magnitude shorter than that of the C2Ag(+) (τ > 5000 fs). The increased excited-state lifetime upon silver complexation is quite unexpected, and it clearly opens the question about what factors are controlling the nonradiative decay in pyrimidine DNA bases. This is an important result for the expanding field of metal-mediated base pairing and may also be important to the photophysical properties of DNA-templated fluorescent silver clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA