Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IET Nanobiotechnol ; 15(6): 558-564, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34694742

RESUMO

Glioblastoma is the most life-threatening tumour of the central nervous system. Temozolomide (TMZ) is the first-choice oral drug for the treatment of glioblastoma, although it shows low efficacy. Silver nanoparticles (AgNPs) have been shown to exhibit biocidal activity in a variety of microorganisms, including some pathogenic microorganisms. Herein, the antiproliferative effect of AgCl-NPs on glioblastoma cell lines (GBM02 and GBM11) and on astrocytes was evaluated through automated quantitative image-based analysis (HCA) of the cells. The cells were treated with 0.1-5.0 µg/ml AgCl-NPs or with 9.7-48.5 µg/ml TMZ. Cells that received combined treatment were also analysed. At a maximum tested concentration of AgCl-NPs, GBM02 and GBM11, the growth decreased by 93% and 40%, respectively, following 72 h of treatment. TMZ treatment decreased the proliferation of GBM02 and GBM11 cells by 58% and 34%, respectively. Combinations of AgCl-NPs and TMZ showed intermediate antiproliferative effects; the lowest concentrations caused an inhibition similar to that obtained with TMZ, and the highest concentrations caused inhibition similar to that obtained with AgCl-NPs alone. No significant changes in astrocyte proliferation were observed. The authors' findings showed that HCA is a fast and reliable approach that can be used to evaluate the antiproliferative effect of the nanoparticles at the single-cell level and that AgCl-NPs are promising agents for glioblastoma treatment.


Assuntos
Glioblastoma , Nanopartículas Metálicas , Linhagem Celular Tumoral , Cloretos , Glioblastoma/tratamento farmacológico , Humanos , Prata/farmacologia , Compostos de Prata
2.
Nanotechnology ; 32(11): 115101, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33254155

RESUMO

Ewing's sarcoma is the most aggressive connective tissue tumor, mainly affecting children and adolescents; the 5 year survival rate is only 50%. Current treatments have poor effectiveness, and more efficient treatments are being sought. Silver-based nanoparticles, such as silver chloride nanoparticles (AgCl-NPs) and silver/silver chloride (Ag/AgCl-NPs) nanoparticles, can be biologically produced and can release Ag+ ions into solution; however, their antitumor activity has been minimally investigated. The aim of this study was to evaluate the antitumor potential of AgCl-NPs and Ag/AgCl-NPs against Ewing's sarcoma cells. A673 cells (Ewing's sarcoma) were treated for 72 h with 0-12.5 µg ml-1 of Ag/AgCl-NPs or 0-40 µg ml-1 of AgCl-NPs. Human cells from the RPE-1 cell line (pigmented retinal epithelium) were used as a model of nontumor cells. The RPE-1 cells were less affected by the administration of AgCl-NPs or Ag/AgCl-NPs, with small reductions in the number of cells and viability and a small increase in apoptosis rates, while lysosomal damage, changes in reactive oxygen species (ROS) production, loss of mitochondrial membrane potential and alterations in microfilaments or cell areas were not observed. A673 tumor cells had significantly reduced number and viability levels when treated with AgCl-NPs, with reductions of 65.05% and 99.17%, respectively, whereas with Ag/AgCl-NP treatment, reductions of 65.53% and 92.51% were observed, respectively. When treated with silver-based nanoparticles, A673 cells also showed a significant increase in ROS production and loss of mitochondrial membrane potential, which culminated in an increase in the percentage of apoptosis among the population. Lysosomal damage was also observed when A673 cells were treated with the highest concentration of AgCl-NPs. In conclusion, the results showed that both AgCl-NPs and Ag/AgCl-NPs had some antitumor activity with minimal effects against healthy cells, which demonstrated the possibility of their use in cancer therapy.


Assuntos
Nanopartículas Metálicas/toxicidade , Sarcoma de Ewing/patologia , Prata/química , Adolescente , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Criança , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Cytotechnology ; 70(6): 1607-1618, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30203320

RESUMO

Glioblastomas (GBM) are aggressive brain tumors with very poor prognosis. While silver nanoparticles represent a potential new strategy for anticancer therapy, the silver/silver chloride nanoparticles (Ag/AgCl-NPs) have microbicidal activity, but had not been tested against tumor cells. Here, we analyzed the effect of biogenically produced Ag/AgCl-NPs (from yeast cultures) on the proliferation of GBM02 glioblastoma cells (and of human astrocytes) by automated, image-based high-content analysis (HCA). We compared the effect of 0.1-5.0 µg mL-1 Ag/AgCl-NPs with that of 9.7-48.5 µg mL-1 temozolomide (TMZ, chemotherapy drug currently used to treat glioblastomas), alone or in combination. At higher concentrations, Ag/AgCl-NPs inhibited GBM02 proliferation more effectively than TMZ (up to 82 and 62% inhibition, respectively), while the opposite occurred at lower concentrations (up to 23 and 53% inhibition, for Ag/AgCl-NPs and TMZ, respectively). The combined treatment (Ag/AgCl-NPs + TMZ) inhibited GBM02 proliferation by 54-83%. Ag/AgCl-NPs had a reduced effect on astrocyte proliferation compared with TMZ, and Ag/AgCl-NPs + TMZ inhibited astrocyte proliferation by 5-42%. The growth rate and population doubling time analyses confirmed that treatment with Ag/AgCl-NPs was more effective against GBM02 cells than TMZ (~ 67-fold), and less aggressive to astrocytes, while Ag/AgCl-NP + TMZ treatment was no more effective against GBM02 cells than Ag/AgCl-NPs monotherapy. Taken together, our data indicate that 2.5 µg mL-1 Ag/AgCl-NPs represents the safest dose tested here, which affects GBM02 proliferation, with limited effect on astrocytes. Our findings show that HCA is a useful approach to evaluate the antiproliferative effect of nanoparticles against tumor cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA