RESUMO
We tested the hypothesis that there is a topographical sympathetic activation in rats submitted to experimental cirrhosis. Baseline renal (rSNA) and splanchnic (sSNA) sympathetic nerve activities were evaluated in anesthetized rats. In addition, we evaluated main arterial pressure (MAP), heart rate (HR), and baroreceptor reflex sensitivity (BRS). Cirrhotic Wistar rats were obtained by bile duct ligation (BDL). MAP and HR were measured in conscious rats, and cardiac BRS was assessed by changes in blood pressure induced by increasing doses of phenylephrine or sodium nitroprusside. The BRS and baseline for the control of sSNA and rSNA were also evaluated in urethane-anesthetized rats. Cirrhotic rats had increased baseline sSNA (BDL, 102 vs control, 58 spikes/s; p<0.05), but no baseline changes in the rSNA compared to controls. These data were accompanied by increased splanchnic BRS (p<0.05) and decreased cardiac (p<0.05) and renal BRS (p<0.05). Furthermore, BDL rats had reduced basal MAP (BDL, 93 vs control, 101 mmHg; p<0.05) accompanied by increased HR (BDL, 378 vs control, 356; p<0.05). Our data have shown topographical sympathetic activation in rats submitted to experimental cirrhosis. The BDL group had increased baseline sSNA, independent of dysfunction in the BRS and no changes in baseline rSNA. However, an impairment of rSNA and HR control by arterial baroreceptor was noted. We suggest that arterial baroreceptor impairment of rSNA and HR is an early marker of cardiovascular dysfunction related to liver cirrhosis and probably a major mechanism leading to sympathoexcitation in decompensated phase.
Assuntos
Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Cirrose Hepática/fisiopatologia , Nervos Esplâncnicos/fisiopatologia , Sistema Vasomotor/fisiopatologia , Animais , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos WistarRESUMO
The [Ru(II)(Hedta)NO(+)] complex is a diamagnetic species crystallizing in a distorted octahedral geometry, with the Ru-N(O) length 1.756(4) A and the RuNO angle 172.3(4) degrees . The complex contains one protonated carboxylate (pK(a)=2.7+/-0.1). The [Ru(II)(Hedta)NO(+)] complex undergoes a nitrosyl-centered one-electron reduction (chemical or electrochemical), with E(NO+/NO)=-0.31 V vs SCE (I=0.2 M, pH 1), yielding [Ru(II)(Hedta)NO](-), which aquates slowly: k(-NO)=2.1+/-0.4x10(-3) s(-1) (pH 1.0, I=0.2 M, CF(3)COOH/NaCF(3)COO, 25 degrees C). At pHs>12, the predominant species, [Ru(II)(edta)NO](-), reacts according to [Ru(II)(edta)NO](-)+2OH(-)-->[Ru(II)(edta)NO(2)](3-), with K(eq)=1.0+/-0.4 x 10(3) M(-2) (I=1.0 M, NaCl; T=25.0+/-0.1 degrees C). The rate-law is first order in each of the reactants for most reaction conditions, with k(OH(-))=4.35+/-0.02 M(-1)s(-1) (25.0 degrees C), assignable mechanistically to the elementary step comprising the attack of one OH(-) on [Ru(II)(edta)NO](-), with subsequent fast deprotonation of the [Ru(II)(edta)NO(2)H](2-) intermediate. The activation parameters were DeltaH(#)=60+/-1 kJ/mol, DeltaS(#)=-31+/-3 J/Kmol, consistent with a nucleophilic addition process between likely charged ions. In the toxicity up-and-down tests performed with Swiss mice, no death was observed in all the doses administered (3-9.08 x 10(-5) mol/kg). The biodistribution tests performed with Wistar male rats showed metal in the liver, kidney, urine and plasma. Eight hours after the injection no metal was detected in the samples. The vasodilator effect of [Ru(II)(edta)NO](-) was studied in aortic rings without endothelium, and was compared with sodium nitroprusside (SNP). The times of maximal effects of [Ru(II)(edta)NO](-) and SNP were 2 h and 12 min, respectively, suggesting that [Ru(II)(edta)NO](-) releases NO slowly to the medium in comparison with SNP.