Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Food ; 25(6): 588-596, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35708636

RESUMO

Insulin secretion and GLUT4 expression are two critical events in glucose regulation. The receptors G-protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor-gamma (PPARγ) modulate these processes, and they represent potential therapeutic targets for new antidiabetic agent's design. Cucurbita ficifolia fruit is used in traditional medicine for diabetes control. Previous studies demonstrated several effects: a hypoglycemic effect mediated by an insulin secretagogue action, antihyperglycemic effect, and promoting liver glycogen storage. Anti-inflammatory and antioxidant effects were also reported. Moreover, some of its phytochemicals have been described, including d-chiro-inositol. However, to understand these effects integrally, other active principles should be investigated. The aim was to perform a chemical fractionation guided by bioassay to isolate and identify other compounds from C. ficifolia fruit that explain its hypoglycemic action as insulin secretagogue, its antihyperglycemic effect by PPARγ activation, and on liver glycogen storage. Three different preparations of C. ficifolia were tested in vivo. Ethyl acetate fraction derived from aqueous extract showed antihyperglycemic effect in an oral glucose tolerance test and was further fractioned. The insulin secretagogue action was tested in RINm5F cells. For the PPARγ activation, C2C12 myocytes were treated with the fractions, and GLUT4 mRNA expression was measured. Chemical fractionation resulted in the isolation and identification of ß-sitosterol and 4-hydroxybenzoic acid (4-HBA), which increased insulin secretion, GLUT4, PPARγ, and adiponectin mRNA expression, in addition to an increase in glycogen storage. 4-HBA exhibited an antihyperglycemic effect, while ß-sitosterol showed hypoglycemic effect, confirming the wide antidiabetic related results we found in our in vitro models. An in silico study revealed that 4-HBA and ß-sitosterol have potential as dual agonists on PPARγ and GPR40 receptors. Both compounds should be considered in the development of new antidiabetic drug development.


Assuntos
Cucurbita , Diabetes Mellitus Experimental , Animais , Cucurbita/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Glicogênio Hepático , PPAR gama/agonistas , PPAR gama/genética , Parabenos , Extratos Vegetais/química , RNA Mensageiro , Secretagogos/uso terapêutico , Sitosteroides
2.
PeerJ ; 9: e11279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986996

RESUMO

BACKGROUND: Ursolic (UA), oleanolic (OA) and rosmarinic (RA) acids are bioactive metabolites found in Lepechinia caulescens that have generated interest for their health benefits, which include antimicrobial, antioxidant, antimutagenic, gastroprotective, antidiabetic, antihypertensive and anti-inflammatory properties, among others. To date, very few attempts have been made to evaluate the potential for simultaneous production of these bioactive compounds, using a biotechnological approach. Hairy root cultures offer a biotechnology approach that can be used to study the factors affecting the biosynthesis and the production of UA, OA and RA. In the current study, we established hairy root cultures of L. caulescens and evaluated the effect of sucrose on biomass accumulation, and the effect of different concentrations and times of exposure of methyl jasmonate (MeJA), on the accumulation of UA, OA and RA. METHODS: Leaves from plants of L. caulescens were inoculated with Agrobacterium rhizogenes strain ATCC 15834. PCR of rolB gene confirmed the transgenic nature of hairy roots. Hairy roots were subcultured in semisolid MSB5 medium, supplemented with 15, 30, 45 or 60 g/L sucrose and after 4 weeks, dry weight was determined. The accumulation of UA, OA and RA of wild plants and hairy roots were determined by HPLC. Finally, the hairy roots were treated with 0, 100, 200 and 300 µM of MeJA and the content of bioactive compounds was analyzed, after 24, 48 and 72 h. RESULTS: High frequency transformation (75%) was achieved, using leaf explants from axenic seedlings, infected with A. rhizogenes. The hairy roots showed an enhanced linear biomass accumulation, in response to the increase in sucrose concentration. The hairy root cultures in MSB5 medium, supplemented with 45 g/L sucrose, were capable to synthesizing UA (0.29 ± 0.00 mg/g DW), OA (0.57 ± 0.00 mg/g DW) and RA (41.66 ± 0.31 mg/g DW), about two, seven and three times more, respectively, than in roots from wild plants. Elicitation time and concentration of MeJA resulted in significant enhancement in the production of UA, OA and RA, with treatments elicited for 24 h, with a concentration of 300 µM of MeJA, exhibiting greatest accumulation. CONCLUSION: This is the first report on development of hairy root cultures of L. caulescens. Future studies should aim towards further improving triterpenes and polyphenolic compound production in hairy roots of L. caulescens, for use in the pharmaceutical and biotechnological industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA