Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29507589

RESUMO

Gastric ulcers are a worldwide health problem and their poor healing is one of the most important causes for their recurrence. We have previously reported the remarkable gastroprotective and anti-Helicobacter pylori activities of the methanolic extract (CpMet) of Cyrtocarpa procera bark. This work investigates, in a murine model, the CpMet gastroprotective mechanism and establishes its preclinical efficacy in the resolution of ethanol-induced gastric ulcers. The results showed that the gastroprotective activity of CpMet is mainly associated with endogenous NO and prostaglandins, followed by sulfhydryl groups and KATP channels. Furthermore, CpMet (300 mg/kg, twice a day) orally administered during 20 consecutive days promoted an ulcer area reduction of 62.65% at the 20th day of the treatment. The effect was confirmed macroscopically by the alleviation of gastric mucosal erosions and microscopically by an increase in mucin content and a reduction in the inflammatory infiltration at the site of the ulcer. No clinical symptoms or signs of toxicity were observed in the treated animals. The results indicate the safety and efficacy of CpMet in promoting high quality of ulcer healing by different mechanisms, but mostly through cytoprotective and anti-inflammatory effects, making it a promising phytodrug for ulcer treatment.

2.
Environ Microbiol ; 17(5): 1487-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25040623

RESUMO

Ornithine lipids (OLs) are phosphorus-free membrane lipids that can be formed by many bacteria but that are absent from archaea and eukaryotes. A function for OLs in stress conditions and in host-bacteria interactions has been shown in some bacteria. Some bacterial species have been described that can form OLs, but lack the known genes (olsBA) involved in its biosynthesis, which implied the existence of a second pathway. Here we describe the bifunctional protein OlsF from Serratia proteamaculans involved in OL formation. Expression of OlsF and its homologue from Flavobacterium johnsoniae in Escherichia coli causes OL formation. Deletion of OlsF in S. proteamaculans caused the absence of OL formation. Homologues of OlsF are widely distributed among γ-, δ- and ε-Proteobacteria and in the Cytophaga-Flavobacterium-Bacteroidetes group of bacteria, including several well-studied pathogens for which the presence of OLs has not been suspected, such as for example Vibrio cholerae and Klebsiella pneumonia. Using genomic data, we predict that about 50% of bacterial species can form OLs.


Assuntos
Aciltransferases/metabolismo , Lipídeos/genética , Lipídeos de Membrana/metabolismo , Ornitina/análogos & derivados , Serratia/enzimologia , Bacteroidetes/metabolismo , Cytophaga/metabolismo , Flavobacterium/metabolismo , Deleção de Genes , Lipídeos/biossíntese , Ornitina/biossíntese , Ornitina/genética , Proteobactérias/metabolismo , Serratia/metabolismo
3.
J Ethnopharmacol ; 143(1): 363-71, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22796202

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cyrtocarpa procera Kunth (Anacardiaceae) is a Mexican endemic tree; its bark has been traditionally employed in Mexico since prehispanic times to relieve digestive disorders. AIM OF THE STUDY: To perform an acute evaluation of the toxicity, gastroprotective, and anti-inflammatory properties, as well as the anti-Helicobacter pylori action of C. procera bark extracts, in order to determine polypharmalcological activities. MATERIALS AND METHODS: Five different polarity extracts (hexanic, CH(2)Cl(2), CH(2)Cl(2)-MeOH, methanolic, and aqueous) were prepared. Each of them was evaluated in the following acute mice models: toxicity Lorke test, ethanol-induced gastric ulcer, TPA-induced ear edema; and the in vitro anti-H. pylori activity with a broth dilution method. RESULTS: None of the extracts were toxic under acute administration. The methanolic, hexanic, and aqueous extracts possess remarkable gastroprotective activity. All the extracts inhibit H. pylori growth, being the hexanic the most active, and only this one showed significant anti-inflammatory effect. CONCLUSIONS: This work demonstrates that C. procera bark has polypharmacological activities; which makes it a promising asset to the development of an integral treatment for gastritis or peptic ulcer related or not to H. pylori. Our findings contribute to the ethnopharmacological knowledge about this species.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antiulcerosos/uso terapêutico , Helicobacter pylori/efeitos dos fármacos , Magnoliopsida , Fitoterapia , Extratos Vegetais/uso terapêutico , Úlcera Gástrica/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antiulcerosos/farmacologia , Modelos Animais de Doenças , Orelha , Edema/induzido quimicamente , Edema/tratamento farmacológico , Etanol , Etnofarmacologia , Helicobacter pylori/crescimento & desenvolvimento , Masculino , Medicina Tradicional , México , Camundongos , Camundongos Endogâmicos , Extratos Vegetais/farmacologia , Piridinas , Úlcera Gástrica/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA