Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(7): 147, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291402

RESUMO

KEY MESSAGE: Reciprocal recurrent selection sometimes increases genetic gain per unit cost in clonal diploids with heterosis due to dominance, but it typically does not benefit autopolyploids. Breeding can change the dominance as well as additive genetic value of populations, thus utilizing heterosis. A common hybrid breeding strategy is reciprocal recurrent selection (RRS), in which parents of hybrids are typically recycled within pools based on general combining ability. However, the relative performances of RRS and other breeding strategies have not been thoroughly compared. RRS can have relatively increased costs and longer cycle lengths, but these are sometimes outweighed by its ability to harness heterosis due to dominance. Here, we used stochastic simulation to compare genetic gain per unit cost of RRS, terminal crossing, recurrent selection on breeding value, and recurrent selection on cross performance considering different amounts of population heterosis due to dominance, relative cycle lengths, time horizons, estimation methods, selection intensities, and ploidy levels. In diploids with phenotypic selection at high intensity, whether RRS was the optimal breeding strategy depended on the initial population heterosis. However, in diploids with rapid-cycling genomic selection at high intensity, RRS was the optimal breeding strategy after 50 years over almost all amounts of initial population heterosis under the study assumptions. Diploid RRS required more population heterosis to outperform other strategies as its relative cycle length increased and as selection intensity and time horizon decreased. The optimal strategy depended on selection intensity, a proxy for inbreeding rate. Use of diploid fully inbred parents vs. outbred parents with RRS typically did not affect genetic gain. In autopolyploids, RRS typically did not outperform one-pool strategies regardless of the initial population heterosis.


Assuntos
Diploide , Vigor Híbrido , Endogamia , Simulação por Computador
2.
Plant Genome ; 12(3): 1-9, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016594

RESUMO

CORE IDEAS: Introduced concept of expected genotype quality (EGQ) and software to calculate it Provided read depth guidelines for GBS in tetraploids Developed software to generate diploidized genotype calls from VCF files Demonstrated value of aligning GBS reads to a mock reference genome for SNP discovery Recommend filtering based on GQ and read depth to prevent genotype bias Although genotyping-by-sequencing (GBS) is a well-established marker technology in diploids, the development of best practices for tetraploid species is a topic of current research. We determined the theoretical relationship between read depth and the phred-scaled probability of genotype misclassification conditioned on the true genotype, which we call expected genotype quality (EGQ). If the GBS method has 0.5% allelic error, then 17 reads are needed to classify simplex tetraploids as heterozygous with 95% accuracy (EGQ = 13) vs. 61 reads to determine allele dosage. We developed an R script to convert tetraploid GBS data in variant call format (VCF) into diploidized genotype calls and applied it to 267 interspecific hybrids of the tetraploid forage grass Urochloa. When reads were aligned to a mock reference genome created from GBS data of the Urochloa brizantha (Hochst. ex A. Rich.) R. D. Webster cultivar Marandu, 25,678 biallelic single nucleotide polymorphism (SNPs) were discovered, compared with ∼3000 SNPs when aligning to the closest true reference genomes, Setaria viridis (L.) P. Beauv. and S. italica (L.) P. Beauv. Cross-validation revealed that missing genotypes were imputed by the random forest method with a median accuracy of 0.85 regardless of heterozygote frequency. Using the Urochloa spp. hybrids, we illustrated how filtering samples based only on genotype quality (GQ) creates genotype bias; a depth threshold based on EGQ is also needed regardless of whether genotypes are called using a diploidized or allele dosage model.


Assuntos
Técnicas de Genotipagem , Tetraploidia , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA