Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Retina Vitreous ; 10(1): 3, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183130

RESUMO

Intravitreal injections are a common procedure in ophthalmology, often using syringes coated with silicone to aid piston movement and needles coated with silicone oil to facilitate penetration of the sclera. Pegcetacoplan and avacincaptad pegol, recently approved for clinical use by the US Food and Drug Administration, have higher viscosity and seem more susceptible to entrap air bubbles compared to anti-VEGF drugs.It is plausible that both anti-complement drugs could be associated with a higher likelihood of introducing silicone oil in the vitreous because of higher viscosity, with potentially higher friction at the inner surface of syringe barrel, in the vicinity of silicone oil. In addition to this, undesirable agitation might be inadvertently promoted by some retina specialists to remove air bubbles from the drug solution.In conclusion, recent reports of silicone oil droplets in the vitreous of patients receiving pegcetacoplan injection might be related to both its viscosity and to agitation of the syringe to remove air bubbles. Since avacincaptad pegol also is viscous, though with different pH, syringe and filter needle, we might expect similar reports for this agent soon. We also recommend further studies be carried not only to clarify the current matter but also the potential association between the combination of agitation, silicone oil and inflammation or any immune response.

2.
Acta Ophthalmol ; 99(8): e1366-e1374, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33890418

RESUMO

PURPOSE: This study aimed to quantify the amount of silicone oil (SO) released across a variety of syringe and needle models routinely used for intravitreal injection. METHODS: The release of SO was assessed in eight models of syringes, two of which were reported to be 'SO-free', and eleven models of needles with unknown SO content. To evaluate SO release within the context of anti-VEGF therapeutics, syringes were evaluated using aflibercept, bevacizumab, buffer, ziv-aflibercept and formulation buffer. All syringe tests were performed with or without agitation by flicking for syringes. Needles were evaluated without agitation only. Samples were fluorescently labelled to identify SO, and triplicate measurements were collected using imaging flow cytometry. RESULTS: Seven out of 8 syringe models showed a statistically significant increase in the SO particle count after agitation. The two SO-free syringe models (HSW Norm-Ject, Daikyo Crystal Zenith) released the least SO particles, with or without agitation, whereas the BD Ultra-Fine and Saldanha-Rodrigues syringes released the most. More SO was released when the syringes were prefilled with formulation buffer than with ziv-aflibercept. Syringes filled with aflibercept and bevacizumab had intermediate levels. Agitation increased the release of SO into each of the drug solutions. Silicone oil (SO) was detected in all needles. CONCLUSIONS: Agitation of the syringe by flicking leads to a substantial increase in the number of SO particles. Silicone oil (SO)-free syringes had the best performance, but physicians must also be aware that needles are siliconized and also contribute to the injection of SO into the vitreous.


Assuntos
Inibidores da Angiogênese/química , Injeções Intravítreas/instrumentação , Agulhas , Silício/análise , Óleos de Silicone/análise , Seringas , Inibidores da Angiogênese/administração & dosagem , Desenho de Equipamento , Humanos , Doenças Retinianas/tratamento farmacológico
3.
Br J Ophthalmol ; 104(2): 291-296, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30910872

RESUMO

BACKGROUND/AIMS: To assess silicone oil (SO) release by different brands of syringes used for intravitreal injection under different handling conditions. METHODS: Eight syringes were analysed: from the USA, Terumo 0.5 mL, Becton-Dickinson (BD) Tuberculin 1 mL, BD Luer-lok 1 mL, BD Ultra-Fine 0.3 mL and Exel Insulin 0.3 mL; from Germany, Braun Omnifix-F 1 mL and Braun Injekt-F 1 mL and from Spain, BD Plastipak 1 mL. The impact of air, priming the plunger, agitation by flicking and fluid temperature on SO release were assessed by light microscopy. Fourier transform infrared spectroscopy (FTIR) was performed to identify the molecular compound in each syringe. RESULTS: Five hundred and sixty syringes were analysed. Terumo 0.5 mL and BD Ultra-Fine 0.3 mL released more SO than all others. BD Luer-lok 1 mL, BD Plastipak and Braun Omnifix-F 1 mL released little SO; BD Tuberculin 1 mL, Exel 0.3 mL and Braun Injekt-F 1 mL released the least SO. Priming the syringe and different temperatures did not significantly affect SO release. Agitation by flicking caused a significantly higher proportion of samples to have SO droplets and an increased number of oil droplets. Air had an additive effect on the release of oil in the agitation groups. FTIR identified polysiloxane in all syringes but Injekt-F. CONCLUSION: Syringes commonly used for intravitreal injections frequently release SO droplets, especially when agitated by flicking. To avoid unnecessary ocular risks, syringes should not be agitated before intravitreal injection. It is desirable that syringes be manufactured specifically for ophthalmic use.


Assuntos
Injeções Intravítreas/métodos , Óleos de Silicone/análise , Seringas/normas , Humanos , Modelos Logísticos , Uso Off-Label
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA