Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 132024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298333

RESUMO

The Trp53 gene encodes several isoforms of elusive biological significance. Here, we show that mice lacking the Trp53 alternatively spliced (AS) exon, thereby expressing the canonical p53 protein but not isoforms with the AS C-terminus, have unexpectedly lost a male-specific protection against Myc-induced B-cell lymphomas. Lymphomagenesis was delayed in Trp53+/+Eµ-Myc males compared to Trp53ΔAS/ΔAS Eµ-Myc males, but also compared to Trp53+/+Eµ-Myc and Trp53ΔAS/ΔAS Eµ-Myc females. Pre-tumoral splenic cells from Trp53+/+Eµ-Myc males exhibited a higher expression of Ackr4, encoding an atypical chemokine receptor with tumor suppressive effects. We identified Ackr4 as a p53 target gene whose p53-mediated transactivation is inhibited by estrogens, and as a male-specific factor of good prognosis relevant for murine Eµ-Myc-induced and human Burkitt lymphomas. Furthermore, the knockout of ACKR4 increased the chemokine-guided migration of Burkitt lymphoma cells. These data demonstrate the functional relevance of alternatively spliced p53 isoforms and reveal sex disparities in Myc-driven lymphomagenesis.


Human cells divide many times during a lifetime, a process that requires careful regulation to avoid uncontrolled cell division, which can lead to various disorders, including cancer. For example, TP53, which encodes multiple proteins, is the most commonly mutated gene in cancers. TP53 carries the instructions to make a tumor suppressor protein, known as p53, which can stop cancers from forming and spreading. In humans and mice, TP53 (and the mouse analogue Trp53) can also be read by the cell to make several slightly different versions of the p53 protein, known as isoforms. The p53 isoforms are much less studied and their role in an organism is still unclear. To address this, Fajac et al. used genome editing to make mouse strains that were still able to express p53, but were only able to create a specific subset of p53 isoforms. In these mice, part of the Trp53 gene had been mutated to remove the cell's ability to make isoforms with an alternative C-terminal end. Fajac et al. then allowed these mice to breed with mice that were model organisms for a cancer called B-cell lymphoma. This revealed that male offspring that lacked alternative p53 isoforms were more susceptible to B-cell lymphoma and that they had decreased levels of the protein ACKR4, a receptor for signaling proteins that regulate cellular movement. Human datasets showed that having higher levels of ACKR4 could be linked to a better disease prognosis in male patients with Burkitt lymphoma, a rare but aggressive form of B-cell lymphoma. The same effect was not observed in females, suggesting that measuring ACKR4 gene expression in male patients with Burkitt lymphoma might be useful to identify the patients at higher risk. The study from Fajac et al. provides a new perspective on p53 ­ one of the most studied proteins. It highlights specific p53 isoforms and the ACKR4 protein as a potential way to identify male patients at higher risk from a type of B-cell lymphoma.


Assuntos
Processamento Alternativo , Isoformas de Proteínas , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Feminino , Linfoma de Células B/genética , Prognóstico , Humanos , Fatores Sexuais , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
2.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661832

RESUMO

p53 (encoded by Trp53) is a tumor suppressor, but mouse models have revealed that increased p53 activity may cause bone marrow failure, likely through dimerization partner, RB-like, E2F4/E2F5 and MuvB (DREAM) complex-mediated gene repression. Here, we designed a systematic approach to identify p53-DREAM pathway targets, the repression of which might contribute to abnormal hematopoiesis. We used Gene Ontology analysis to study transcriptomic changes associated with bone marrow cell differentiation, then chromatin immunoprecipitation-sequencing (ChIP-seq) data to identify DREAM-bound promoters. We next created positional frequency matrices to identify evolutionary conserved sequence elements potentially bound by DREAM. The same approach was developed to find p53-DREAM targets associated with brain abnormalities, also observed in mice with increased p53 activity. Putative DREAM-binding sites were found for 151 candidate target genes, of which 106 are mutated in a blood or brain genetic disorder. Twenty-one DREAM-binding sites were tested and found to impact gene expression in luciferase assays, to notably regulate genes mutated in dyskeratosis congenita (Rtel1), Fanconi anemia (Fanca), Diamond-Blackfan anemia (Tsr2), primary microcephaly [Casc5 (or Knl1), Ncaph and Wdr62] and pontocerebellar hypoplasia (Toe1). These results provide clues on the role of the p53-DREAM pathway in regulating hematopoiesis and brain development, with implications for tumorigenesis.


Assuntos
Proteínas de Ciclo Celular , Proteína Supressora de Tumor p53 , Animais , Camundongos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regiões Promotoras Genéticas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA