Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 31(19): 4613-23, 1992 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-1316154

RESUMO

Azospirillum brasilense glutamate synthase has been studied by absorption, electron paramagnetic resonance, and circular dichroism spectroscopies in order to determine the type and number of iron-sulfur centers present in the enzyme alpha beta protomer and to gain information on the role of the flavin and iron-sulfur centers in the catalytic mechanism. The FMN and FAD prosthetic groups are demonstrated to be non-equivalent with respect to their reactivities with sulfite. Sulfite reacts with only one of the two flavins forming an N(5)-sulfite adduct with a Kd of approximately 1 mM. The enzyme-sulfite complex is reduced by NADPH, and the complexed sulfite is competitively displaced by 2-oxoglutarate, which suggests the reactive flavin to be at the imine-reducing site. These data are in agreement with the two-site model of the enzyme active center proposed on the basis of kinetic studies [Vanoni, M.A., Nuzzi, L., Rescigno, M., Zanetti, G., & Curti, B. (1991) Eur. J. Biochem. 202, 181-189]. Each enzyme protomer was found, by chemical analysis, to contain 12.1 +/- 0.5 mol of non-heme iron. Electron paramagnetic resonance spectroscopic studies on the oxidized and reduced forms of glutamate synthase demonstrated the presence of three distinct iron-sulfur centers per enzyme protomer. The oxidized enzyme exhibits an axial spectrum with g values at 2.03 and 1.97, which is highly temperature-dependent and integrates to 1.1 +/- 0.2 spin/protomer. This signal is assigned to a [3Fe-4S]1+ cluster (Fe-S)I. Reduction of the enzyme with an NADPH-regenerating system results in reduction of the [3Fe-4S]1+ center to a species with a g approximately 12 signal characteristic of the S = 2 spin state of a [3Fe-4S]0 cluster. The NADPH-reduced enzyme also exhibits an [Fe-S] signal at g values of 1.98, 1.95, and 1.88, which integrates to 0.9 spin/protomer and is due to a second cluster (Fe-S)II. Reduction of the enzyme with the light/deazaflavin method results in a signal characteristic of [Fe-S] clusters with g values of 2.03, 1.92, and 1.86 and an integrated intensity of 1.9 spin/protomer. This signal arises from reduction of the (Fe-S)II center and from that of the third, lower potential iron-sulfur center (Fe-S)III. Circular dichroism spectral data on the oxidized and reduced forms of the enzyme are more consistent with the assignment of (Fe-S)II and (Fe-S)III as [4Fe-4S] clusters rather than [2Fe-2S] centers.


Assuntos
Azospirillum brasilense/enzimologia , Flavinas/química , Glutamato Sintase/química , Proteínas Ferro-Enxofre/química , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Ferro/química , Luz , NADP/química , Oxirredução , Análise Espectral , Sulfitos/química , Enxofre/química , Temperatura
2.
Biochemistry ; 30(48): 11478-84, 1991 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-1683791

RESUMO

The reaction mechanism of Azospirillum brasilense glutamate synthase has been investigated by several approaches. 15N nuclear magnetic resonance studies demonstrate that the amide nitrogen of glutamine is reductively transferred to 2-oxoglutarate in an irreversible manner with no release of the transferred ammonia group into the medium. Identical results were obtained using thio-NADPH and acetylpyridine-NADPH, which are shown to be less efficient substrates of the enzyme than NADPH. Similarly, no exchange of the ammonia group being transferred with exogenous ammonium ion was observed during catalysis. The glutamate formed as the product of the iminoglutarate reduction was determined to be in the L configuration. The enzyme was also found to catalyze, under anaerobic conditions, the exchange of the 4proS H of NADPH with solvent both in the absence and in the presence of 2-oxoglutarate and glutamine. The reductive half-reaction is therefore a reversible segment of the overall irreversible amidotransferase reaction. 15N NMR studies also showed that the enzyme does not catalyze glutamate dehydrogenase/oxidase reactions or any observable glutaminase activity under neutral (pH 7.5) conditions. Glutaminase activity was also not observable with the reduced enzyme alone or in the presence of D-glutamate (a competitive inhibitor of glutamate synthase with respect to 2-oxoglutarate, with a Ki of about 11 microM) or with the oxidized enzyme in the presence of 2-oxoglutarate, D-glutamate, or NADP+. These data confirm species-dependent differences of A. brasilense glutamate synthase with respect to the enzyme from other sources.


Assuntos
Azospirillum brasilense/enzimologia , Glutamato Sintase/metabolismo , Amônia/metabolismo , Glutamatos/biossíntese , Ácido Glutâmico , Glutaminase/metabolismo , Glutamina/metabolismo , Glutamina/farmacologia , Ácidos Cetoglutáricos/metabolismo , Espectroscopia de Ressonância Magnética , NADP/metabolismo , Oxirredução , Piridinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA