Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxicon ; 228: 107097, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028563

RESUMO

Rhomb-I, a 23-kDa metalloproteinase was isolated from L. m. rhombeata venom. Its dimethylcasein proteolysis was abolished by metal chelators, and slightly enhanced by Ca2+ and Mg2+ ions, but inhibited by Co2+, Zn2+ and α2-macroglobulin. In aqueous solution, rhomb-I autoproteolyzed to a 20- and 11-kDa fragments at 37 °C. The amino acid sequence showed high homology with other snake venom metalloproteinases. Rhomb-I causes hemorrhage that may be ascribed to hydrolysis of essential basement membrane, extracellular matrix and plasma proteins. It preferentially cleaves the α-chains of fibrin (ogen). Rhomb-I inhibited convulxin- and von Willebrand factor (vWF)-induced aggregation on human platelets without significant effect on collagen-stimulated aggregation or other effectors. It digests vWF into a low-molecular-mass multimers of vWF and a rvWF-A1 domain to a 27-kDa fragment as revealed by western blotting with mouse anti-rvWF A1-domain IgG. Incubation of platelets with rhomb-I resulted in adhesion to and cleavage of platelet receptors glycoprotein (GP)Ibα and GPVI to release a 55-kDa soluble form. Both membrane glycoproteins GPIbα that binds vWF, together with GPVI which binds collagen, play a key role in mediating platelet adhesion/activation and can initiate (patho)physiological thrombus formation. Conclusions: rhomb-I is implicated in the pathophysiology of Lachesis envenoming by disrupting vasculature, hemostasis and platelet aggregation through impairing vWF-GPIb axis and blocking GPVI-collagen binding.


Assuntos
Agregação Plaquetária , Fator de von Willebrand , Humanos , Animais , Camundongos , Fator de von Willebrand/metabolismo , Metaloproteases/metabolismo , Plaquetas , Colágeno/metabolismo
2.
Toxicon, V. 228, 107097, mar. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4853

RESUMO

Rhomb-I, a 23-kDa metalloproteinase was isolated from L. m. rhombeata venom. Its dimethylcasein proteolysis was abolished by metal chelators, and slightly enhanced by Ca2+ and Mg2+ ions, but inhibited by Co2+, Zn2+ and α2-macroglobulin. In aqueous solution, rhomb-I autoproteolyzed to a 20- and 11-kDa fragments at 37 °C. The amino acid sequence showed high homology with other snake venom metalloproteinases. Rhomb-I causes hemorrhage that may be ascribed to hydrolysis of essential basement membrane, extracellular matrix and plasma proteins. It preferentially cleaves the α-chains of fibrin (ogen). Rhomb-I inhibited convulxin- and von Willebrand factor (vWF)-induced aggregation on human platelets without significant effect on collagen-stimulated aggregation or other effectors. It digests vWF into a low-molecular-mass multimers of vWF and a rvWF-A1 domain to a 27-kDa fragment as revealed by western blotting with mouse anti-rvWF A1-domain IgG. Incubation of platelets with rhomb-I resulted in adhesion to and cleavage of platelet receptors glycoprotein (GP)Ibα and GPVI to release a 55-kDa soluble form. Both membrane glycoproteins GPIbα that binds vWF, together with GPVI which binds collagen, play a key role in mediating platelet adhesion/activation and can initiate (patho)physiological thrombus formation. Conclusions: rhomb-I is implicated in the pathophysiology of Lachesis envenoming by disrupting vasculature, hemostasis and platelet aggregation through impairing vWF-GPIb axis and blocking GPVI-collagen binding.

3.
Molecules ; 24(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561469

RESUMO

Atroxlysin-III (Atr-III) was purified from the venom of Bothrops atrox. This 56-kDa protein bears N-linked glycoconjugates and is a P-III hemorrhagic metalloproteinase. Its cDNA-deduced amino acid sequence reveals a multidomain structure including a proprotein, a metalloproteinase, a disintegrin-like and a cysteine-rich domain. Its identity with bothropasin and jararhagin from Bothrops jararaca is 97% and 95%, respectively. Its enzymatic activity is metal ion-dependent. The divalent cations, Mg2+ and Ca2+, enhance its activity, whereas excess Zn2+ inhibits it. Chemical modification of the Zn2+-complexing histidine residues within the active site by using diethylpyrocarbonate (DEPC) inactivates it. Atr-III degrades plasma fibronectin, type I-collagen, and mainly the α-chains of fibrinogen and fibrin. The von Willebrand factor (vWF) A1-domain, which harbors the binding site for GPIb, is not hydrolyzed. Platelets interact with collagen via receptors for collagen, glycoprotein VI (GPVI), and α2ß1 integrin. Neither the α2ß1 integrin nor its collagen-binding A-domain is fragmented by Atr-III. In contrast, Atr-III cleaves glycoprotein VI (GPVI) into a soluble ~55-kDa fragment (sGPVI). Thereby, it inhibits aggregation of platelets which had been stimulated by convulxin, a GPVI agonist. Selectively, Atr-III targets GPVI antagonistically and thus contributes to the antithrombotic effect of envenomation by Bothrops atrox.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Venenos de Crotalídeos/enzimologia , Crotalinae , Metaloproteases/farmacologia , Glicoproteínas da Membrana de Plaquetas/biossíntese , Sequência de Aminoácidos , Animais , Crotalinae/metabolismo , Matriz Extracelular , Metaloproteases/química , Metaloproteases/genética , Metaloproteases/isolamento & purificação , Modelos Moleculares , Filogenia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Glicoproteínas da Membrana de Plaquetas/química , Conformação Proteica , Proteólise , Relação Estrutura-Atividade
4.
Toxins (Basel) ; 9(12)2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206190

RESUMO

Snake venom metalloproteinases (SVMPs) are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogen)olytic activity. Their main biological substrate is fibrin(ogen), whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a) they are insensitive to plasma serine proteinase inhibitors; (b) they have the potential to avoid bleeding risk; (c) mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d) few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure-function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.


Assuntos
Fibrinolíticos/farmacologia , Hemostasia/efeitos dos fármacos , Metaloproteases/farmacologia , Venenos de Serpentes/enzimologia , Serpentes , Sequência de Aminoácidos , Animais , Domínio Catalítico , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Humanos , Metaloproteases/química , Metaloproteases/uso terapêutico , Especificidade da Espécie , Relação Estrutura-Atividade
5.
Toxins (Basel) ; 5(10): 1780-98, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24131891

RESUMO

We report the detailed molecular characterization of two PLA2s, Lys49 and Asp49 isolated from Bothrops leucurus venom, and examined their effects against Dengue virus (DENV). The Bl-PLA2s, named BlK-PLA2 and BlD-PLA2, are composed of 121 and 122 amino acids determined by automated sequencing of the native proteins and peptides produced by digestion with trypsin. They contain fourteen cysteines with pIs of 9.05 and 8.18 for BlK- and BlD-PLA2s, and show a high degree of sequence similarity to homologous snake venom PLA2s, but may display different biological effects. Molecular masses of 13,689.220 (Lys49) and 13,978.386 (Asp49) were determined by mass spectrometry. DENV causes a prevalent arboviral disease in humans, and no clinically approved antiviral therapy is currently available to treat DENV infections. The maximum non-toxic concentration of the proteins to LLC-MK2 cells determined by MTT assay was 40 µg/mL for Bl-PLA2s (pool) and 20 µg/mL for each isoform. Antiviral effects of Bl-PLA2s were assessed by quantitative Real-Time PCR. Bl-PLA2s were able to reduce DENV-1, DENV-2, and DENV-3 serotypes in LLC-MK2 cells infection. Our data provide further insight into the structural properties and their antiviral activity against DENV, opening up possibilities for biotechnological applications of these Bl-PLA2s as tools of research.


Assuntos
Antivirais/isolamento & purificação , Vírus da Dengue/efeitos dos fármacos , Fosfolipases A2/isolamento & purificação , Proteínas de Répteis/isolamento & purificação , Venenos de Serpentes/química , Aedes , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/farmacologia , Bothrops , Linhagem Celular , Macaca mulatta , Dados de Sequência Molecular , Fosfolipases A2/química , Fosfolipases A2/farmacologia , Proteínas de Répteis/química , Proteínas de Répteis/farmacologia , Alinhamento de Sequência
6.
Biochimie ; 95(7): 1476-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23578498

RESUMO

The thrombin-like enzyme from Bothrops barnetti named barnettobin was purified. We report some biochemical features of barnettobin including the complete amino acid sequence that was deduced from the cDNA. Snake venom serine proteases affect several steps of human hemostasis ranging from the blood coagulation cascade to platelet function. Barnettobin is a monomeric glycoprotein of 52 kDa as shown by reducing SDS-PAGE, and contains approx. 52% carbohydrate by mass which could be removed by N-glycosidase. The complete amino acid sequence was deduced from the cDNA sequence. Its sequence contains a single chain of 233 amino acid including three N-glycosylation sites. The sequence exhibits significant homology with those of mammalian serine proteases e.g. thrombin and with homologous TLEs. Its specific coagulant activity was 251.7 NIH thrombin units/mg, releasing fibrinopeptide A from human fibrinogen and showed defibrinogenating effect in mouse. Both coagulant and amidolytic activities were inhibited by PMSF. N-deglycosylation impaired its temperature and pH stability. Its cDNA sequence with 750 bp encodes a protein of 233 residues. Indications that carbohydrate moieties may play a role in the interaction with substrates are presented. Barnettobin is a new defibrinogenating agent which may provide an opportunity for the development of new types of anti-thrombotic drugs.


Assuntos
Bothrops/metabolismo , Coagulantes/química , DNA Complementar/química , Trombina/química , Peçonhas/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Coagulação Sanguínea , Coagulantes/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Dados de Sequência Molecular , Análise de Sequência , Trombina/metabolismo , Peçonhas/farmacologia
7.
Biochim Biophys Acta ; 1810(7): 683-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21539897

RESUMO

BACKGROUND: Multifunctional l-amino acid oxidases (LAAOs) occur widely in snake venoms. METHODS: The l-AAO from Bothrops leucurus (Bl-LAAO) venom was purified using a combination of molecular exclusion and ion-exchange chromatographies. We report some biochemical features of Bl-LAAO associated with its effect on platelet function and its cytotoxicity. RESULTS: Bl-LAAO is a 60kDa monomeric glycoprotein. Its N-terminal sequence shows high homology to other members of the snake-venom LAAO family. Bl-LAAO catalyzes oxidative deamination of l-amino acids with the generation of H2O2. The best substrates were: l-Met, l-Norleu, l-Leu, l-Phe and l-Trp. The effects of snake venom LAAOs in hemostasis, especially their action on platelet function remain largely unknown. Bl-LAAO dose-dependently inhibited platelet aggregation of both human PRP and washed platelets. Moreover, the purified enzyme exhibited a killing effect in vitro against Leishmania sp., promastigotes, with a very low EC(50) of 0.07µM. Furthermore, the cytotoxicity of Bl-LAAO was observed in the stomach cancer MKN-45, adeno carcinoma HUTU, colorectal RKO and human fibroblast LL-24 cell lines. The enzyme released enough H2O2 in culture medium to induce apoptosis in cells in a dose- and time-dependent manner. The biological effects were inhibited by catalase. CONCLUSION: Bl-LAAO, a major component of B. leucurus venom, is a cytotoxin acting primarily via the generation of high amounts of H2O2 which kill the cells. GENERAL SIGNIFICANCE: These results allow us to consider the use of LAAOs as anticancer agents, as tools in biochemical studies to investigate cellular processes, and to obtain a better understanding of the envenomation mechanism.


Assuntos
Apoptose/efeitos dos fármacos , L-Aminoácido Oxidase/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Venenos de Serpentes/enzimologia , Sequência de Aminoácidos , Animais , Bothrops/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Estabilidade Enzimática , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , L-Aminoácido Oxidase/genética , L-Aminoácido Oxidase/metabolismo , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/crescimento & desenvolvimento , Dados de Sequência Molecular , Especificidade por Substrato , Temperatura
8.
Arch Biochem Biophys ; 496(1): 9-20, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20102699

RESUMO

We report the isolation and structure-function relationship of a 23kDa metalloproteinase named atroxlysin-I from the venom of the Peruvian Bothrops atrox (Jergón). Atroxlysin is a P-I metalloproteinase and contains 204 residues. Its proteolytic activity towards dimethylcasein is enhanced by Ca2+ but inhibited by EDTA, dithiothreitol, excessive Zn2+ and alpha2-macroglobulin. Unlike other structurally homologous P-I metalloproteinases, atroxlysin-I causes hemorrhages. To examine its hemorrhagic activity mechanistically, we studied its function in vitro and in vivo. It cleaved the Ala14-Leu15 and Tyr16-Leu17 bonds in oxidized insulin B-chain and specifically hydrolyzed the alpha-chains of fibrin(ogen) in a dose- and time-dependent manner. Atroxlysin-I cleaved plasma fibronectin and other extracellular matrix proteins (collagens I and IV) and the triple-helical fragment CB3 of collagen IV, but did not degrade laminin-111. Complementarily, the laminin and collagen binding integrins alpha7beta1 and alpha1beta1 were cleaved by atroxlysin. Even without catalytic activity atroxlysin-I inhibited collagen- and ADP-triggered platelet aggregation.


Assuntos
Plaquetas/efeitos dos fármacos , Vasos Sanguíneos/citologia , Bothrops , Matriz Extracelular/efeitos dos fármacos , Metaloproteases/toxicidade , Venenos de Serpentes/enzimologia , Sequência de Aminoácidos , Animais , Plaquetas/metabolismo , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Matriz Extracelular/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Fibronectinas/metabolismo , Hemorragia/induzido quimicamente , Hemostasia/efeitos dos fármacos , Humanos , Integrinas/metabolismo , Macroglobulinas/metabolismo , Metaloproteases/química , Metaloproteases/metabolismo , Dados de Sequência Molecular , Especificidade por Substrato
9.
Arch Biochem Biophys ; 468(2): 193-204, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17963685

RESUMO

Leucurolysin-B (leuc-B) is an hemorrhagic metalloproteinase found in the venom of Bothrops leucurus (white-tailed-jararaca) snake. By means of liquid chromatography consisting of gel filtration on Sephracryl S-200, S-300 and ion-exchange on DEAE Sepharose, leuc-B was purified to homogeneity. The proteinase has an apparent molecular mass of 55kDa as revealed by the reduced SDS-PAGE, and represents approximately 1.2% of the total protein in B. leucurus venom. The partial amino acid sequence of leuc-B was determined by automated Edman sequencing of peptides derived from digests of the S-reduced and alkylated protein with trypsin. Leuc-B exhibits the characteristic motif of metalloproteinases, HEXXHXXGXXH and a methionine-containing turn of similar conformation ("Met-turn"), which forms a hydrophobic basis for the zinc ions and the three histidine residues involved as ligands. Leuc-B has been characterized as a P-III metalloproteinase and possesses a multidomain structure including a metalloproteinase, a disintegrin-like (ECD sequence instead of the typical RGD motif) and a cysteine-rich C-terminal domain. Leuc-B contains three potential sites of N-glycosylation. The enzyme only cleaves the Ala14-Leu15 peptide bond of the oxidized insulin B-chain and preferentially hydrolyzes the Aalpha-chain of fibrinogen and the alpha-chain of fibrin. Its proteolytic activity was completely inhibited by metal chelating agents but not by other typical proteinase inhibitors. In addition, its enzymatic activity was stimulated by the divalent cations Ca2+ and Mg2+ but inhibited by Zn2+ and Cu2+. The catalytic activity of leuc-B on extracellular matrix proteins could readily lead to loss of capillary integrity resulting in hemorrhage occurring at those sites (MHD=30ng in rabbit), with alterations in platelet function. In summary, here we report the isolation and the structure-function relationship of a P-III snake venom metalloproteinase.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/química , Metaloproteases/química , Metaloproteases/ultraestrutura , Sequência de Aminoácidos , Animais , Ativação Enzimática , Estabilidade Enzimática , Metaloproteases/classificação , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA