Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338694

RESUMO

The arbovirus Chikungunya (CHIKV) is transmitted by Aedes mosquitoes in urban environments, and in humans, it triggers debilitating symptoms involving long-term complications, including arthritis and Guillain-Barré syndrome. The development of antiviral therapies is relevant, as no efficacious vaccine or drug has yet been approved for clinical application. As a detailed map of molecules underlying the viral infection can be obtained from the metabolome, we validated the metabolic signatures of Vero E6 cells prior to infection (CC), following CHIKV infection (CV) and also upon the inclusion of the nsP2 protease inhibitor wedelolactone (CWV), a coumestan which inhibits viral replication processes. The metabolome groups evidenced significant changes in the levels of lactate, myo-inositol, phosphocholine, glucose, betaine and a few specific amino acids. This study forms a preliminary basis for identifying metabolites through HR-MAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Ressonance Spectroscopy) and proposing the affected metabolic pathways of cells following viral infection and upon incorporation of putative antiviral molecules.


Assuntos
Aedes , Febre de Chikungunya , Animais , Chlorocebus aethiops , Humanos , Células Vero , Metabolômica , Replicação Viral , Antivirais/farmacologia
2.
Viruses ; 14(10)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36298749

RESUMO

Since the intricate and complex steps in pathogenesis and host-viral interactions of arthropod-borne viruses or arboviruses are not completely understood, the multi-omics approaches, which encompass proteomics, transcriptomics, genomics and metabolomics network analysis, are of great importance. We have reviewed the omics studies on mosquito-borne viruses of the Togaviridae, Peribuyaviridae and Phenuiviridae families, specifically for Chikungunya, Mayaro, Oropouche and Rift Valley Fever viruses. Omics studies can potentially provide a new perspective on the pathophysiology of arboviruses, contributing to a better comprehension of these diseases and their effects and, hence, provide novel insights for the development of new antiviral drugs or therapies.


Assuntos
Alphavirus , Arbovírus , Orthobunyavirus , Phlebovirus , Animais , Humanos , Arbovírus/genética , Alphavirus/genética , Orthobunyavirus/genética , Antivirais/farmacologia
3.
Virus Res ; 307: 198610, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34718046

RESUMO

Arboviruses are transmitted by arthropods (arthropod-borne virus) which can be mosquitoes or other hematophagous arthropods, in which their life cycle occurs before transmission to other hosts. Arboviruses such as Dengue, Zika, Saint Louis Encephalitis, West Nile, Yellow Fever, Japanese Encephalitis, Rocio and Murray Valley Encephalitis viruses are some of the arboviruses transmitted biologically among vertebrate hosts by blood-taking vectors, mainly Aedes and Culex sp., and are associated with neurological, viscerotropic, and hemorrhagic reemerging diseases, posing as significant health and socioeconomic concern, as they become more and more adaptive to new environments, to arthropods vectors and human hosts. One of the main families that include mosquito-borne viruses is Flaviviridae, and here, we review the case of the Flavivirus genus, which comprises the viruses cited above, using a variety of research approaches published in literature, including genomics, transcriptomics, proteomics, metabolomics, etc., to better understand their structures as well as virus-host interactions, which are essential for development of future antiviral therapies.


Assuntos
Aedes , Arbovírus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Arbovírus/genética , Flavivirus/genética , Humanos , Mosquitos Vetores
4.
PLoS One ; 16(3): e0246319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661906

RESUMO

The potential outcome of flavivirus and alphavirus co-infections is worrisome due to the development of severe diseases. Hundreds of millions of people worldwide live under the risk of infections caused by viruses like chikungunya virus (CHIKV, genus Alphavirus), dengue virus (DENV, genus Flavivirus), and zika virus (ZIKV, genus Flavivirus). So far, neither any drug exists against the infection by a single virus, nor against co-infection. The results described in our study demonstrate the inhibitory potential of two flavonoids derived from citrus plants: Hesperetin (HST) against NS2B/NS3pro of ZIKV and nsP2pro of CHIKV and, Hesperidin (HSD) against nsP2pro of CHIKV. The flavonoids are noncompetitive inhibitors and the determined IC50 values are in low µM range for HST against ZIKV NS2B/NS3pro (12.6 ± 1.3 µM) and against CHIKV nsP2pro (2.5 ± 0.4 µM). The IC50 for HSD against CHIKV nsP2pro was 7.1 ± 1.1 µM. The calculated ligand efficiencies for HST were > 0.3, which reflect its potential to be used as a lead compound. Docking and molecular dynamics simulations display the effect of HST and HSD on the protease 3D models of CHIKV and ZIKV. Conformational changes after ligand binding and their effect on the substrate-binding pocket of the proteases were investigated. Additionally, MTT assays demonstrated a very low cytotoxicity of both the molecules. Based on our results, we assume that HST comprise a chemical structure that serves as a starting point molecule to develop a potent inhibitor to combat CHIKV and ZIKV co-infections by inhibiting the virus proteases.


Assuntos
Vírus Chikungunya/enzimologia , Citrus/química , Hesperidina/farmacologia , Peptídeo Hidrolases/metabolismo , Zika virus/enzimologia , Animais , Vírus Chikungunya/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/química , Extratos Vegetais/química , Conformação Proteica , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo , Zika virus/efeitos dos fármacos
5.
Front Mol Biosci ; 8: 816166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35187076

RESUMO

The SARS-CoV-2 main protease, also known as 3-chymotrypsin-like protease (3CLpro), is a cysteine protease responsible for the cleavage of viral polyproteins pp1a and pp1ab, at least, at eleven conserved sites, which leads to the formation of mature nonstructural proteins essential for the replication of the virus. Due to its essential role, numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat Covid-19 and have reported a vast number of inhibitors and their co-crystal structures. Despite all the ongoing efforts, D-peptides, which possess key advantages over L-peptides as therapeutic agents, have not been explored as potential drug candidates against 3CLpro. The current work fills this gap by reporting an in silico approach for the discovery of D-peptides capable of inhibiting 3CLpro that involves structure-based virtual screening (SBVS) of an in-house library of D-tripeptides and D-tetrapeptides into the protease active site and subsequent rescoring steps, including Molecular Mechanics Generalized-Born Surface Area (MM-GBSA) free energy calculations and molecular dynamics (MD) simulations. In vitro enzymatic assays conducted for the four top-scoring D-tetrapeptides at 20 µM showed that all of them caused 55-85% inhibition of 3CLpro activity, thus highlighting the suitability of the devised approach. Overall, our results present a promising computational strategy to identify D-peptides capable of inhibiting 3CLpro, with broader application in problems involving protein inhibition.

6.
Sci Rep ; 9(1): 6350, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015525

RESUMO

Vitamin B12 acts as a cofactor for various metabolic reactions important in living organisms. The Vitamin B12 biosynthesis is restricted to prokaryotes, which means, all eukaryotic organisms must acquire this molecule through diet. This study presents the investigation of Vitamin B12 metabolism and the characterization of precorrin-4 C(11)-methyltransferase (CobM), an enzyme involved in the biosynthesis of Vitamin B12 in Corynebacterium pseudotuberculosis. The analysis of the C. pseudotuberculosis genome identified two Vitamin B12-dependent pathways, which can be strongly affected by a disrupted vitamin metabolism. Molecular dynamics, circular dichroism, and NMR-STD experiments identified regions in CobM that undergo conformational changes after s-adenosyl-L-methionine binding to promote the interaction of precorrin-4, a Vitamin B12 precursor. The binding of s-adenosyl-L-methionine was examined along with the competitive binding of adenine, dATP, and suramin. Based on fluorescence spectroscopy experiments the dissociation constant for the four ligands and the target protein could be determined; SAM (1.4 ± 0.7 µM), adenine (17.8 ± 1.5 µM), dATP (15.8 ± 2.0 µM), and Suramin (6.3 ± 1.1 µM). The results provide rich information for future investigations of potential drug targets within the C. pseudotuberculosis's Vitamin B12 metabolism and related pathways to reduce the pathogen's virulence in its hosts.


Assuntos
Corynebacterium pseudotuberculosis/metabolismo , Vitamina B 12/metabolismo , Adenina/química , Adenina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cinética , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Espectrometria de Fluorescência , Homologia Estrutural de Proteína , Suramina/química , Suramina/metabolismo , Vitamina B 12/biossíntese , Vitamina B 12/química
7.
Int J Biol Macromol ; 117: 1066-1073, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29885395

RESUMO

In pathogens, the thioredoxin system forms part of the defense against oxidative stress and ensures the formation of the proper disulfide bonds to ensure protein function. In Corynebacterium pseudotuberculosis, the role and mechanism of TrxA1 has not been elucidated, but, the significant homology among different Trxs and the conservation of the residues that form their active sites underline the importance of the Trx systems. Proteins involved in redox metabolism and low molecular weight thiols, which might interact with them, become attractive targets to modulate the activity of pathogens. The activity of the protein was investigated using a turbidimetric assay system. The influence of different pH and low molecular weight thiols were tested. Additionally, this assay was used to investigate the inhibitory potential of ligands from different molecular families, such as, polyanions (suramin and heparin) and flavonoids (hesperetin and hesperidin). All four compounds showed inhibition of the protein activity by approximately 80%. The interactions between these compounds and Cp-TrxA1 were investigated using CD spectroscopy, NMR, molecular docking and dynamics. Our results demonstrate that suramin and hesperetin can serve as lead molecules for the development of specific inhibitors for the C. pseudotuberculosis TrxA1.


Assuntos
Corynebacterium pseudotuberculosis/metabolismo , Flavonoides/química , Flavonoides/farmacologia , Polímeros/química , Polímeros/farmacologia , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/química , Domínio Catalítico , Corynebacterium pseudotuberculosis/genética , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxirredução , Polieletrólitos , Ligação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação
8.
FEBS J ; 285(2): 372-390, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197185

RESUMO

Cold shock proteins (Csps) function to preserve cell viability at low temperatures by binding to nucleic acids and consequently control gene expression. The mesophilic bacterium Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis in animals, and infection in livestock is a considerable economic burden worldwide. In this report, the structure of cold shock protein A from Cp (Cp-CspA) and biochemical analysis of its temperature-dependent interaction with a Y-box ssDNA motif is presented. The Cp-CspA structure contains five ß-strands making up a ß-barrel fold with 11 hydrophobic core residues and two salt bridges that confers it with a melting temperature of ~ 54 °C that is similar to mesophilic Bs-CspB. Chemical shift perturbations analysis revealed that residues in the nucleic acid-binding motifs (RNP 1 and 2) and loop 3 are involved in binding to the Y-box fragment either by direct interaction or by conformational rearrangements remote from the binding region. Fluorescence quenching experiments of Cp-CspA showed that the dissociation constants for Y-box ssDNA binding is nanomolar and the binding affinity decreased as the temperature increased, indicating that the interaction is enthalpically driven and the hydrogen bonds and van der Waals forces are important contributions for complex stabilization. The Y31 of Cp-CspA is a particular occurrence among Csps from mesophilic bacteria that provide a possible explanation for the higher binding affinity to ssDNA than that observed for Bs-CspB. Anisotropy measurements indicated that the reduction in molecular mobility of Cp-CspA upon Y-box binding is characterized by a cooperative process. DATABASE: Resonance assignment and structural data are available in the Biological Magnetic Resonance Data Bank and Protein Data Bank under accession number 26802 and 5O6F, respectively.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/metabolismo , Corynebacterium pseudotuberculosis/metabolismo , DNA de Cadeia Simples/metabolismo , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Biologia Computacional , Polarização de Fluorescência , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Homologia de Sequência de Aminoácidos
9.
Microb Cell Fact ; 15: 83, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27184574

RESUMO

BACKGROUND: Corynebacterium pseudotuberculosis, a facultative intracellular bacterial pathogen, is the etiological agent of caseous lymphadenitis (CLA), an infectious disease that affects sheep and goats and it is responsible for significant economic losses. The disease is characterized mainly by bacteria-induced caseous necrosis in lymphatic glands. New vaccines are needed for reliable control and management of CLA. Thus, the putative virulence factors SpaC, SodC, NanH, and PknG from C. pseudotuberculosis FRC41 may represent new target proteins for vaccine development and pathogenicity studies. RESULTS: SpaC, PknG and NanH presented better vaccine potential than SodC after in silico analyses. A total of 136 B and T cell epitopes were predicted from the four putative virulence factors. A cluster analysis was performed to evaluate the redundancy degree among the sequences of the predicted epitopes; 57 clusters were formed, most of them (34) were single clusters. Two clusters from PknG and one from SpaC grouped epitopes for B and T-cell (MHC I and II). These epitopes can thus potentially stimulate a complete immune response (humoral and cellular) against C. pseudotuberculosis. Several other clusters, including two from NanH, grouped B-cell epitopes with either MHC I or II epitopes. The four target proteins were expressed in Escherichia coli. A purification protocol was developed for PknG expression. CONCLUSIONS: In silico analyses show that the putative virulence factors SpaC, PknG and NanH present good potential for CLA vaccine development. Target proteins were successfully expressed in E. coli. A protocol for PknG purification is described.


Assuntos
Vacinas Bacterianas/genética , Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/patogenicidade , Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Sequência de Aminoácidos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/metabolismo , Análise por Conglomerados , Corynebacterium pseudotuberculosis/imunologia , Corynebacterium pseudotuberculosis/metabolismo , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Escherichia coli/metabolismo , Dados de Sequência Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Fatores de Virulência/metabolismo
10.
Protein Expr Purif ; 112: 15-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25907380

RESUMO

The gram-positive bacterium Corynebacterium pseudotuberculosis is the causative agent of different diseases that cause dramatically reduced yields of wool and milk, and results in weight loss, carcass condemnation and also death mainly in sheep, equids, cattle and goats and therefore globally results in considerable economical loss. Cold shock proteins are conserved in many bacteria and eukaryotic cells and they help to restore normal cell functions after cold shock in which some appear to have specific functions at normal growth temperature as well. Cold shock protein A from C. pseudotuberculosis was expressed in Escherichia coli and purified. The thermal unfolding/refolding process characterized by circular dichroism, differential scanning calorimetry and NMR spectroscopy techniques indicated that the refolding process was almost completely reversible.


Assuntos
Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/genética , Corynebacterium pseudotuberculosis/genética , Sequência de Aminoácidos , Animais , Bovinos , Dicroísmo Circular , Clonagem Molecular , Proteínas e Peptídeos de Choque Frio/isolamento & purificação , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/veterinária , Escherichia coli/genética , Cabras , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Ovinos , Temperatura de Transição
11.
Biochim Biophys Acta ; 1850(2): 393-400, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445713

RESUMO

The gram-positive bacteria Corynebacterium pseudotuberculosis, the causative agent of caseous lymphadenitis in livestock significantly reduces productivity and often causes death. The adenine/guanine-specific DNA glycosylase (MutY) prevents mutations in the DNA of the pathogen and a unique feature of the MutY protein family is the [4Fe-4S]2+ cluster that interlinks two protein subdomains. MutY from C. pseudotuberculosis was expressed in E. coli and purified, the CD experiments indicate a high content of α-helices and random coiled secondary structure and a typical near-UV CD fingerprint for the [4Fe-4S]2+ cluster. EDTA and copper sulfate possess a strong destabilizing effect on the [4Fe-4S]2+ cluster. UV-vis and fluorescence spectroscopy results demonstrate that between pH3.0 and 4.0 the integrity of the [4Fe-4S]2+ cluster is destroyed. To investigate the thermal stability of the protein differential scanning calorimetry and fluorescence spectroscopy were used and the Tm was determined to be 45°C. The analysis presented provides information concerning the protein stability under different physio-chemical conditions.


Assuntos
Proteínas de Bactérias/química , Corynebacterium pseudotuberculosis/enzimologia , DNA Glicosilases/química , Proteínas Ferro-Enxofre/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Sulfato de Cobre/química , Corynebacterium pseudotuberculosis/genética , DNA Glicosilases/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Proteínas Ferro-Enxofre/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA