Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev. argent. cardiol ; 89(1): 27-36, mar. 2021. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1279716

RESUMO

RESUMEN Introducción: La restricción del crecimiento intrauterino es una alteración del desarrollo fetal que se caracteriza por una tasa de crecimiento durante la etapa fetal que es menor al potencial genético de crecimiento para la edad gestacional. Esta condición plantea una carga importante para la salud pública, ya que aumenta la morbimortalidad de la descendencia, a corto y a largo plazo, particularmente, por asociarse al desarrollo de enfermedad cardiovascular y metabólica en la vida adulta. Objetivos: Mediante el uso de herramientas bioinformáticas nos propusimos identificar posibles genes cardinales involucrados en la restricción del crecimiento intrauterino asociados al desarrollo de obesidad, hipertensión arterial y síndrome metabólico. Material y métodos: Obtuvimos un total de 343 genes involucrados en los fenotipos de interés e identificamos 20 genes que resultaron significativamente relevantes en el análisis de la red de interacción. Particularmente, cuatro de estos genes identificados codifican para factores de crecimiento o sus receptores, VEGFA, PDGFRB, IGF1R y EGFR. Además, identificamos genes relacionados con la insulina y el control de la homeostasis cardiovascular, como son el CTNNB1, APP, MYC y MDMD2. Por otra parte, el análisis de clústeres permitió reconocer los términos de ontología genética más significativos, entre los que se destacan aquellos relacionados con procesos biológicos de proliferación y muerte celular programada, de comunicación intercelular, del metabolismo proteico, y de desarrollo del sistema cardiovascular. Conclusiones: Los genes hallados en este estudio podrían ser de utilidad como biomarcadores putativos de la presencia de alteraciones cardiovasculares y metabólicas asociadas a la restricción del crecimiento intrauterino o potenciales blancos terapéuticos de estrategias de tratamiento orientadas al genotipo del paciente.


ABSTRACT Background: Intrauterine growth restriction is an abnormal fetal development characterized by a fetal growth rate lower than the potential genetic growth for the gestational age. This condition represents a major burden for public health systems, as it increases short and long-term morbidity and mortality in the offspring, particularly because of its association with the development of cardiovascular and metabolic disease in adult life. Objectives: The aim of the present study was to identify possible cardinal genes involved in intrauterine growth restriction associated with the development of obesity, hypertension and metabolic syndrome using bioinformatics tools. Methods: A total of 343 genes involved in the phenotypes of interest were obtained and 20 genes were identified as significantly relevant in the interaction network analysis. Specifically, four of these identified genes encode for growth factors or their receptors, VEGFA, PDGFRB, IGF1R and EGFR. We also identified genes related to insulin and cardiovascular homeostasis as CTNNB1, APP, MYC and MDMD2. Cluster analysis provided the most significant gene ontology terms, including those related to the biological processes of proliferation and programmed cell death, intercellular communication, protein metabolism and development of the cardiovascular system. Conclusions: The genes found in this study could be useful as putative biomarkers for the presence of cardiovascular and metabolic disorders associated with intrauterine growth restriction, or as potential therapeutic targets for treatment strategies directed to the patient's genotype.

2.
Nutrition ; 65: 18-26, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31029917

RESUMO

OBJECTIVE: Intrauterine and postnatal micronutrient malnutrition may program metabolic diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation, or postweaning growth induces alterations in liver, adipose tissue, and intermediate metabolism. METHODS: Female Wistar rats were fed low-zinc or control zinc diets from pregnancy to offspring weaning. After weaning, male and female offspring were fed either a low-zinc or a control zinc diet. At 74 d of life, oral glucose tolerance tests were performed and serum metabolic profiles were evaluated. Systolic blood pressure and oxidative stress and morphology of liver and retroperitoneal adipose tissue were evaluated in 81 d old offspring. RESULTS: Zinc restriction during prenatal and postnatal life induced an increase in systolic blood pressure, hyperglycemia, hypertriglyceridemia, higher serum glucose levels at 180 min after glucose overload, and greater insulin resistance indexes in male rats. Hepatic histologic studies revealed no morphologic alterations, but an increase in lipid peroxidation and catalase activity were identified in zinc-deficient male rats. Adipose tissue from zinc-deficient male rats had adipocyte hypertrophy, an increase in lipid peroxidation, and a reduction in catalase and glutathione peroxidase activity. Adequate dietary zinc content during postweaning growth reversed basal hyperglycemia, hypertriglyceridemia, insulin resistance indexes, hepatic oxidative stress, and adipocyte hypertrophy. Female rats were less sensitive to the metabolic effects of zinc restriction. CONCLUSIONS: This study strengthens the importance of a balanced intake of zinc during growth to ensure adequate lipid and carbohydrate metabolism in adult life.


Assuntos
Exposição Materna/efeitos adversos , Doenças Metabólicas/metabolismo , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Zinco/deficiência , Animais , Suplementos Nutricionais , Feminino , Feto/metabolismo , Lactação/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Doenças Metabólicas/etiologia , Gravidez , Complicações na Gravidez/etiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Wistar , Fatores Sexuais , Desmame , Zinco/administração & dosagem
3.
J Nutr Biochem ; 56: 89-98, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29525532

RESUMO

Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Desnutrição/complicações , Fenômenos Fisiológicos da Nutrição Materna , Prenhez , Doenças Vasculares/etiologia , Zinco/deficiência , Acetilcolina/química , Angiotensina II/química , Ração Animal , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Cálcio/metabolismo , Feminino , Lactação , Masculino , Micronutrientes , NG-Nitroarginina Metil Éster/química , Óxido Nítrico/química , Óxido Nítrico Sintase/metabolismo , Nitroprussiato/química , Oxidantes/química , Estresse Oxidativo , Gravidez , Ratos , Ratos Wistar , Sístole , Doenças Vasculares/fisiopatologia , Vasoconstritores/química , Zinco/sangue
4.
Eur J Nutr ; 57(2): 569-583, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27822638

RESUMO

PURPOSE: Zinc restriction during fetal and postnatal development could program cardiovascular diseases in adulthood. The aim of this study was to determine the effects of zinc restriction during fetal life, lactation, and/or post-weaning growth on cardiac inflammation, apoptosis, oxidative stress, and nitric oxide system of male and female adult rats. METHODS: Wistar rats were fed a low- or a control zinc diet during pregnancy and up to weaning. Afterward, offspring were fed either a low- or a control zinc diet until 81 days of life. IL-6 and TNF-α levels, TUNEL assay, TGF-ß1 expression, thiobarbituric acid-reactive substances that determine lipoperoxidation damage, NADPH oxidase-dependent superoxide anion production, antioxidant and nitric oxide synthase activity, mRNA and protein expression of endothelial nitric oxide synthase, and serine1177 phosphorylation isoform were determined in left ventricle. RESULTS: Zinc deficiency activated apoptotic and inflammatory processes and decreased TGF-ß1 expression and nitric oxide synthase activity in cardiac tissue of both sexes. Male zinc-deficient rats showed no changes in endothelial nitric oxide synthase expression, but a lower serine1177 phosphorylation. Zinc deficiency induced an increase in antioxidant enzymes activity and no differences in lipoperoxidation products levels in males. Females were less sensitive to this deficiency exhibiting lower increase in apoptosis, lower decrease in expression of TGF-ß1, and higher antioxidant and nitric oxide enzymes activities. A zinc-adequate diet during postnatal life reversed most of these mechanisms. CONCLUSION: Prenatal and postnatal zinc deficiency induces alterations in cardiac apoptotic, inflammatory, oxidative, and nitric oxide pathways that could predispose the onset of cardiovascular diseases in adult life.


Assuntos
Deficiências Nutricionais/fisiopatologia , Desenvolvimento Fetal , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Miocardite/etiologia , Estresse Oxidativo , Zinco/deficiência , Animais , Apoptose , Biomarcadores/sangue , Biomarcadores/metabolismo , Vasos Coronários/imunologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Deficiências Nutricionais/imunologia , Deficiências Nutricionais/metabolismo , Deficiências Nutricionais/patologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Regulação Enzimológica da Expressão Gênica , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Masculino , Miométrio/imunologia , Miométrio/metabolismo , Miométrio/patologia , Miométrio/fisiopatologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Gravidez , Distribuição Aleatória , Ratos Wistar , Desmame
5.
Free Radic Biol Med ; 90: 35-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26569027

RESUMO

High fructose consumption has been associated to deleterious metabolic conditions. In the kidney, high fructose causes renal alterations that contribute to the development of chronic kidney disease. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate risk factors of chronic diseases. This work investigated the capacity of (-)-epicatechin to prevent the renal damage induced by high fructose consumption in rats. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without supplementation with (-)-epicatechin (20mg/kg body weight/d) in the rat chow diet. Results showed that, in the presence of mild proteinuria, the renal cortex from fructose-fed rats exhibited fibrosis and decreases in nephrin, synaptopodin, and WT1, all indicators of podocyte function in association with: (i) increased markers of oxidative stress; (ii) modifications in the determinants of NO bioavailability, i.e., NO synthase (NOS) activity and expression; and (iii) development of a pro-inflammatory condition, manifested as NF-κB activation, and associated with high expression of TNFα, iNOS, and IL-6. Dietary supplementation with (-)-epicatechin prevented or ameliorated the adverse effects of high fructose consumption. These results suggest that (-)-epicatechin ingestion would benefit when renal alterations occur associated with inflammation or metabolic diseases.


Assuntos
Catequina/farmacologia , Inflamação/prevenção & controle , Córtex Renal/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Suplementos Nutricionais , Frutose/administração & dosagem , Glutationa Peroxidase/metabolismo , Masculino , NF-kappa B/fisiologia , Ratos , Ratos Sprague-Dawley
6.
J Nutr Biochem ; 26(7): 745-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943039

RESUMO

This work investigated the blood pressure (BP)-lowering effect of the flavanol (-)-epicatechin in a model of metabolic syndrome. Rats were fed a regular chow diet without (Control) or with 10% (w/v) fructose in the drinking water (high fructose, HF) for 8 weeks. A subgroup of the HF-fed rats was supplemented with (-)-epicatechin 20 mg/kg body weight (HF-EC). Dietary (-)-epicatechin reverted the increase in BP caused by the fructose treatment. In aorta, superoxide anion production and the expression of the NADPH oxidase (NOX) subunits p47(phox) and p22(phox) were enhanced in the HF-fed rats. The increase was prevented by (-)-epicatechin. Similar profile was observed for NOX4 expression. The activity of aorta nitric oxide synthase (NOS) was increased in the HF group and was even higher in the HF-EC rats. These effects were paralleled by increased endothelial NOS phosphorylation at the activation site Ser1177. Among the more relevant mitogen-activated protein kinase pathways in vascular tissue, c-Jun-N-terminal kinase was shown to be activated in the aorta of the HF-fed rats, and (-)-epicatechin supplementation mitigated this activation. Thus, the results suggest that dietary (-)-epicatechin supplementation prevented hypertension in HF-fed rats, decreasing superoxide anion production and elevating NOS activity, favoring an increase in NO bioavailability.


Assuntos
Anti-Hipertensivos/uso terapêutico , Catequina/uso terapêutico , Suplementos Nutricionais , Endotélio Vascular/enzimologia , Hipertensão/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/agonistas , Animais , Antioxidantes/uso terapêutico , Aorta Torácica/enzimologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Carboidratos da Dieta/efeitos adversos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Frutose/efeitos adversos , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/patologia , Sistema de Sinalização das MAP Quinases , Masculino , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/química , Fosforilação , Processamento de Proteína Pós-Traducional , Distribuição Aleatória , Ratos Sprague-Dawley , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
7.
PLoS One ; 10(3): e0120362, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774801

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. METHODS: 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. RESULTS: Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. CONCLUSIONS: Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes.


Assuntos
Fator Natriurético Atrial/farmacologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Ratos Endogâmicos SHR , Animais , Apoptose/efeitos dos fármacos , Fator Natriurético Atrial/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Diurese/efeitos dos fármacos , Feminino , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Rim/anatomia & histologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Natriurese/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Fatores Sexuais
8.
PLoS One ; 9(8): e104923, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111608

RESUMO

The aim of this study was to evaluate whether L-Arginine (L-Arg) supplementation modifies nitric oxide (NO) system and consequently aquaporin-2 (AQP2) expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS) activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules. Western blot was used to detect the expression of AQP2 and NOS types I and III; real time PCR was used to quantify AQP2 mRNA. The expression of both NOS isoforms, NOS I and NOS III, was decreased in the renal outer medulla of diabetic rats and L-Arg failed to prevent these decreases. However, L-Arg improved NO production, NADPH-diaphorase activity in collecting ducts and other tubular structures, and NOS activity in renal homogenates from diabetic rats. AQP2 protein and mRNA were decreased in the renal outer medulla of diabetic rats and L-Arg administration prevented these decreases. These results suggest that the decreased NOS activity in collecting ducts of the renal outer medulla may cause, at least in part, the decreased expression of AQP2 in this model of diabetes and constitute additional evidence supporting a role for NO in contributing to renal water reabsorption through the modulation of AQP2 expression in this pathological condition. However, we cannot discard that another pathway different from NOS also exists that links L-Arg to AQP2 expression.


Assuntos
Aquaporina 2/biossíntese , Arginina/farmacologia , Diabetes Mellitus Experimental/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Aquaporina 2/metabolismo , Glicemia/efeitos dos fármacos , Citrulina/biossíntese , Diabetes Mellitus Experimental/induzido quimicamente , Medula Renal/patologia , Túbulos Renais Coletores/patologia , Masculino , NADPH Desidrogenase/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Estreptozocina
9.
PLoS One ; 8(8): e71992, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951276

RESUMO

INTRODUCTION: The aim of this study was to investigate both the effects of chronic treatment with atrial natriuretic peptide (ANP) on systolic blood pressure (SBP), cardiac nitric oxide (NO) system, oxidative stress, hypertrophy, fibrosis and apoptosis in spontaneously hypertensive rats (SHR), and sex-related differences in the response to the treatment. METHODS: 10 week-old male and female SHR were infused with ANP (100 ng/hr/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). SBP was recorded and nitrites and nitrates excretion (NOx) were determined. After treatment, NO synthase (NOS) activity, eNOS expression, thiobarbituric acid-reactive substances (TBARS) and glutathione concentration were determined in left ventricle, as well as the activity of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). Morphological studies in left ventricle were performed in slices stained with hematoxylin-eosin or Sirius red to identify collagen as a fibrosis indicator; immunohistochemistry was employed for identification of transforming growth factor beta; and apoptosis was evaluated by Tunel assay. RESULTS: Female SHR showed lower SBP, higher NO-system activity and less oxidative stress, fibrosis and hypertrophy in left ventricle, as well as higher cardiac NOS activity, eNOS protein content and NOx excretion than male SHR. Although ANP treatment lowered blood pressure and increased NOS activity and eNOS expression in both sexes, cardiac NOS response to ANP was more marked in females. In left ventricle, ANP reduced TBARS and increased glutathione concentration and activity of CAT and SOD enzymes in both sexes, as well as GPx activity in males. ANP decreased fibrosis and apoptosis in hearts from male and female SHR but females showed less end-organ damage in heart. Chronic ANP treatment would ameliorate hypertension and end-organ damage in heart by reducing oxidative stress, increasing NO-system activity, and diminishing fibrosis and hypertrophy.


Assuntos
Anti-Hipertensivos/farmacologia , Fator Natriurético Atrial/farmacologia , Hipertensão/fisiopatologia , Animais , Anti-Hipertensivos/administração & dosagem , Apoptose/efeitos dos fármacos , Fator Natriurético Atrial/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Catalase/metabolismo , Modelos Animais de Doenças , Feminino , Glutationa/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Ratos Endogâmicos SHR , Fatores Sexuais , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta/metabolismo
10.
Nutrition ; 29(3): 568-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274096

RESUMO

OBJECTIVE: Fetal and postnatal zinc deficiencies induce an increase in arterial blood pressure and impair renal function in male adult rats. We therefore hypothesized that these renal alterations are present in early stages of life and that there are sexual differences in the adaptations to this nutritional injury. The aim was to study the effects of moderate zinc deficiency during fetal life and lactation on renal morphology, oxidative stress, apoptosis, and the nitric oxide system in male and female rats at 21 d of life. METHODS: Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy to weaning. Glomerulus number, morphology, oxidative stress, apoptotic cells, nitric oxide synthase activity, and protein expression were evaluated in the kidneys of offspring at 21 d. RESULTS: Zinc deficiency decreased the nephron number, induced glomerular hypertrophy, increased oxidative damage, and decreased nitric oxide synthase activity in the male and female rat kidneys. Nitric oxide synthase activity was not affected by inhibitors of the neuronal or inducible isoforms, so nitric oxide was mainly generated by the endothelial isoenzyme. Gender differences were observed in glomerular areas and antioxidant enzyme activities. CONCLUSION: Zinc deficiency during fetal life and lactation induces an early decrease in renal functional units, associated with a decrease in nitric oxide activity and an increase in oxidative stress, which would contribute to increased arterial blood pressure and renal dysfunction in adulthood. The sexual differences observed in this model may explain the dissimilar development of hypertension and renal diseases in adult life.


Assuntos
Rim/patologia , Rim/fisiopatologia , Óxido Nítrico/metabolismo , Zinco/deficiência , Animais , Apoptose , Dieta , Feminino , Hipertensão/etiologia , Nefropatias/etiologia , Lactação , Masculino , Troca Materno-Fetal , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Fatores Sexuais , Zinco/administração & dosagem
11.
Am J Physiol Renal Physiol ; 302(11): F1385-94, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378819

RESUMO

Atrial natriuretic peptide (ANP) is an important regulator of blood pressure (BP). One of the mechanisms whereby ANP impacts BP is by stimulation of nitric oxide (NO) production in different tissues involved in BP control. We hypothesized that ANP-stimulated NO is impaired in the kidneys of spontaneously hypertensive rats (SHR) and this contributes to the development and/or maintenance of high levels of BP. We investigated the effects of ANP on the NO system in SHR, studying the changes in renal nitric oxide synthase (NOS) activity and expression in response to peptide infusion, the signaling pathways implicated in the signaling cascade that activates NOS, and identifying the natriuretic peptide receptors (NPR), guanylyl cyclase receptors (NPR-A and NPR-B) and/or NPR-C, and NOS isoforms involved. In vivo, SHR and Wistar-Kyoto rats (WKY) were infused with saline (0.05 ml/min) or ANP (0.2 µg·kg(-1)·min(-1)). NOS activity and endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) NOS expression were measured in the renal cortex and medulla. In vitro, ANP-induced renal NOS activity was determined in the presence of iNOS and nNOS inhibitors, NPR-A/B blockers, guanine nucleotide-regulatory (G(i)) protein, and calmodulin inhibitors. Renal NOS activity was higher in SHR than in WKY. ANP increased NOS activity, but activation was lower in SHR than in WKY. ANP had no effect on expression of NOS isoforms. ANP-induced NOS activity was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in kidney. The renal NOS response to ANP was reduced by G(i) protein and calmodulin inhibitors. We conclude that ANP interacts with NPR-C, activating Ca-calmodulin eNOS through G(i) protein. NOS activation also involves NPR-A/B. The NOS response to ANP was diminished in kidneys of SHR. The impaired NO system response to ANP in SHR participates in the maintenance of high blood pressure.


Assuntos
Fator Natriurético Atrial/farmacologia , Rim/efeitos dos fármacos , Óxido Nítrico/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Diurese/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Isoenzimas/metabolismo , Rim/enzimologia , Rim/metabolismo , Testes de Função Renal , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Natriurese/efeitos dos fármacos , Nitratos/urina , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Nitritos/urina , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Rev. argent. cardiol ; 79(4): 322-328, ago. 2011. graf, tab
Artigo em Espanhol | LILACS | ID: lil-634280

RESUMO

Introducción Numerosos estudios sugieren que trastornos metabólicos y desequilibrios nutricionales durante la vida intrauterina pueden inducir adaptaciones que programen enfermedades cardiovasculares e hipertensión arterial. En trabajos previos mostramos que la restricción moderada de cinc durante la vida fetal, la lactancia y/o el crecimiento conduce al desarrollo de hipertensión arterial y disfunción renal en la adultez. Objetivos Evaluar la presencia de alteraciones cardiovasculares tempranas en ratas sometidas a una deficiencia moderada de cinc durante la vida fetal y la lactancia y si existen diferencias respecto del sexo. Material y métodos Ratas Wistar hembras recibieron durante la preñez hasta el destete una dieta control o baja en cinc. En el momento del nacimiento se conformaron cuatro grupos experimentales: machos y hembras nacidos de madres bajas y machos y hembras nacidos de madres controles. A los 6 y a los 21 días de vida se sacrificaron y se determinaron el peso corporal, el peso del corazón, parámetros morfométricos cardiovasculares, la actividad de la óxido nítrico sintasa en el sistema cardiovascular y el estado oxidativo cardíaco. Resultados El aporte insuficiente de cinc durante la vida fetal y la lactancia indujo un proceso de re­modelación del cardiomiocito, diferente en machos que en hembras, un aumento del estrés oxidativo cardíaco, una remodelación hipotrófica de la aorta torácica y una disminución de la actividad de la óxido nítrico sintasa en el sistema cardiovascular. Conclusiones Este trabajo demuestra que la deficiencia de cinc induce alteraciones cardiovasculares, dis­tintas en machos que en hembras, tempranas en el desarrollo, que podrían contribuir a la programación de enfermedades en la vida adulta.


Background Several studies suggest that metabolic disorders and nutrition imbalance during prenatal life may induce adaptations that program cardiovascular diseases and hypertension. We have previously shown that moderate zinc restriction during prenatal life, lactation and/or growth leads to the development of hypertension and renal dysfunction in adulthood. Objectives To evaluate the presence of early cardiovascular alterations in rats exposed to a moderate zinc deficient diet during pre­natal life and lactation, and to determine whether there are differences between males and females. Material and Methods Female Wistar rats received low zinc diet or control diet from the beginning of pregnancy up to weaning. Four experimental groups were established at birth: males and females born from low-diet mothers, and males and females born from control-diet mothers. Male and female offspring were sacrificed at 6 and 21 days of life to evaluate body weight, heart weight, cardiovascular morphometric parameters and nitric oxide synthase activity in the cardiovascular system and cardiac oxidative status. Results The insufficient zinc intake during prenatal life and lacta-tion induced a remodeling process of the cardiomyocyte which was different in males and females, increased cardiac oxidative stress, produced a hypotrophic remodeling of the thoracic aorta and reduced nitric oxide synthase activity in the cardiovascular system. Conclusions This study shows that zinc deficiency induces cardiovascular abnormalities in early stages of development, which are different in males and females that may contribute to programming of diseases in adulthood.

13.
Peptides ; 31(7): 1309-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363270

RESUMO

The aim was to study the effects of C-type natriuretic peptide (CNP) on mean arterial pressure (MAP) and the cardiovascular nitric oxide (NO) system in spontaneously hypertensive rats (SHR), and to investigate the signaling pathways involved in this interaction. SHR and WKY rats were infused with saline or CNP. MAP and nitrites and nitrates excretion (NO(x)) were determined. Catalytic NO synthase (NOS) activity and endothelial (eNOS), neuronal (nNOS) and inducible NOS (iNOS) were measured in the heart and aorta artery. NOS activity induced by CNP was determined in presence of: iNOS or nNOS inhibitors, NPR-A/B natriuretic peptide receptors blocker and Gi protein and calmodulin inhibitors. CNP diminished MAP and increased NO(x) in both groups. Cardiovascular NOS activity was higher in SHR than in WKY. CNP increased NOS activity, but this activation was lower in SHR. CNP had no effect on NOS isoforms expression. iNOS and nNOS inhibitors did not modify CNP-induced NOS activity. NPR-A/B blockade induced no changes in NOS stimulation via CNP in both tissues. Cardiovascular NOS response to CNP was reduced by Gi protein and calmodulin inhibitors in both groups. CNP interacts with NPR-C receptors, activating Ca-calmodulin eNOS via Gi protein. NOS response to CNP is impaired in the heart and aorta of SHR. Alterations in the interaction between CNP and NO would be involved in the maintenance of high blood pressure in this model of hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Miocárdio/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Óxido Nítrico/metabolismo , Animais , Hipertensão/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Endogâmicos SHR
14.
Br J Nutr ; 104(3): 382-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20338072

RESUMO

We had previously shown that prenatal exposure to Zn-deficient diets induces an increase in blood pressure and impairs renal function in adult rats. The aim of the present study was to investigate if moderate Zn restriction during early growth periods, fetal life and lactation would induce impairment in the vascular and renal NO system and alterations in plasma lipid profile. We also investigated if these effects persisted into adult life, even when a Zn-replete diet was provided after weaning. Pregnant rats were fed control (30 parts per million (ppm)) or low (8 ppm) Zn diets throughout gestation up to weaning. Afterwards, male offspring from low-Zn mothers were assigned to low- or control-Zn diets during 60 d. Male offspring from control mothers were fed a control diet. Animals exposed to Zn restriction showed low birth weight, increased systolic blood pressure and serum TAG levels, and decreased glomerular filtration rate in adulthood. Zn restriction induced a decrease in vascular and renal NO synthase activity and a reduced expression of the endothelial NO synthase isoform in aorta. A control-Zn diet during post-weaning growth returned TAG levels to normal but was unsuccessful in normalising systolic blood pressure, glomerular filtration rate or NO system activity in Zn-deficient offspring. Zn restriction during fetal life, lactation and/or post-weaning growth induced alterations in the vascular and renal NO system and in lipid metabolism that could contribute to the programming of hypertension and renal dysfunction in adulthood.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal , Zinco/deficiência , Animais , Animais Recém-Nascidos , Peso ao Nascer , Dieta , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Crescimento , Lactação , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Isoformas de Proteínas , Ratos , Ratos Wistar , Triglicerídeos/sangue , Desmame , Zinco/farmacologia
15.
Am J Physiol Heart Circ Physiol ; 298(3): H778-86, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19783776

RESUMO

The objective was to study atrial natriuretic peptide (ANP) effects on mean arterial pressure (MAP) and cardiovascular nitric oxide (NO) system in spontaneously hypertensive rats (SHRs), investigating the receptors and signaling pathways involved. In vivo, SHRs and Wistar-Kyoto (WKY) rats were infused with saline (0.05 ml/min) or ANP (0.2 microg.kg(-1).min(-1)) for 1 h. MAP and nitrites and nitrates excretion (NOx) were determined. NO synthase (NOS) activity and endothelial (eNOS), neuronal (nNOS) and inducible (iNOS) NOS expression were measured in the heart and aorta. In vitro, heart and aortic NOS activity induced by ANP was determined in the presence of iNOS and nNOS inhibitors, natriuretic peptide receptor (NPR)-A/B blocker, G(i) protein, and calmodulin inhibitors. As a result, ANP diminished MAP and increased NOx in both groups. Cardiovascular NOS activity was higher in SHRs than in WKY rats. ANP increased NOS activity, but the activation was lower in SHRs than in WKY rats. ANP had no effect on NOS isoform expression. NOS activity induced by ANP was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in ventricle and aorta but not in atria. Cardiovascular NOS response to ANP was reduced by G(i) protein and calmodulin inhibitors in both groups. In conclusion, in atria, ventricle, and aorta, ANP interacts with NPR-C receptors, activating Ca(2+)-calmodulin eNOS through G(i) protein. In ventricle and aorta, NOS activation also involves NPR-A/B. The NOS response to ANP was impaired in heart and aorta of SHRs. The impaired NO-system response to ANP in hypertensive animals, involving alterations in the signaling pathway, could participate in the maintenance of high blood pressure in this model of hypertension.


Assuntos
Fator Natriurético Atrial/fisiologia , Sistema Cardiovascular/fisiopatologia , Hipertensão/fisiopatologia , Óxido Nítrico/fisiologia , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Masculino , Miocárdio/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/fisiologia
16.
Regul Pept ; 151(1-3): 130-4, 2008 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18586055

RESUMO

UNLABELLED: Atrial natriuretic peptide (ANP) induces activation of nitric oxide-synthase (NOS). AIMS: to identify the isoform of NOS involved in ANP effects, to study whether ANP modifies NOS expression and to investigate the signaling pathways and receptors involved in NOS stimulation. NOS activation induced by ANP would be mediated by endothelial NOS (eNOS) since neuronal or inducible NOS inhibition did not alter ANP effect. The peptide induced no changes in eNOS protein expression. NOS activity stimulated by ANP, in the kidney, aorta and left ventricle, was partially abolished by the NPR-A/B antagonist, as well as PKG inhibition, but no difference in atria was observed. 8-Br-cGMP partially mimicked the effect of ANP on NOS in all tissues. NOS stimulation by ANP in atria disappeared when G protein was inhibited, but this effect was partial in the other tissues. Calmodulin antagonist abolished NOS stimulation via ANP. Inhibition of the PLC, PKC or PI3 kinase/Akt pathway failed to alter NOS activation induced by ANP. ANP would activate eNOS in the aorta, heart and kidney without modifying the expression of the enzyme. ANP would interact with NPR-C coupled via G proteins leading to the activation of Ca(2+)-calmodulin-dependent NOS in atria; while in ventricle, aorta and kidney, ANP could also interact with NPR-A/B, increasing cGMP, which in turns activates PKG to stimulate eNOS.


Assuntos
Fator Natriurético Atrial/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Fator Natriurético Atrial/fisiologia , Endotélio/efeitos dos fármacos , Endotélio/enzimologia , Ativação Enzimática/efeitos dos fármacos , Guanidinas/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Rim/efeitos dos fármacos , Rim/enzimologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
17.
Rev. argent. cardiol ; 75(6): 456-462, nov.-dic. 2007. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-633961

RESUMO

Introducción El péptido natriurético auricular (ANP) y el óxido nítrico (NO) aumentan la diuresis y la natriuresis y disminuyen el tono vascular. Previamente demostramos que el NO está involucrado en el efecto hipotensor del ANP en ratas normotensas. Objetivo Estudiar el efecto del ANP sobre la presión arterial media (PAM) y el sistema del NO en ratas espontáneamente hipertensas (SHR) y Wistar Kyoto (WKY) y la participación de la isoforma inducible de la NO-sintasa (iNOS). Material y métodos Protocolo 1: los animales fueron infundidos con solución salina (0,05 ml/min) o con ANP (0,2 µg/kg/min) durante 1 hora. Se determinaron: PAM y nitritos y nitratos urinarios (NOx). Se extrajo el corazón y se determinaron la actividad, con L-[U14C]-arginina, y la expresión (Western blot) de iNOS y NOS endotelial (eNOS). Protocolo 2: luego del agregado de ANP (1 µM), cANP(4-23) (agonista NPR-C,1µM) o aminoguanidina (inhibidor de iNOS, 1 µM) se determinó la actividad de la NOS en la aurícula derecha y en el ventrículo izquierdo de SHR y WKY. Resultados La infusión con ANP disminuyó la PAM y aumentó los NOx en ambos grupos. La actividad NOS fue mayor en SHR y se incrementó con la infusión de ANP. Se observaron niveles proteicos mayores para eNOS e iNOS en SHR, que no se modificaron con ANP. La actividad basal de iNOS fue mayor en SHR. En la aurícula, el ANP sólo interactuaría con el NPR-C para activar la NOS y en el ventrículo también participarían los receptores NPR-A/B. El desarrollo y/o el mantenimiento de la hipertensión en este modelo experimental involucraría alteraciones en la interacción entre ambos sistemas, ANP y NO.


Background Atrial natriuretic peptide (ANP) and nitric oxide (NO) increase diuresis and natriuresis and reduce vascular tone. We have previously demonstrated that NO is involved in ANP hypotensive effect in normotensive rats. Objective To assess the effect of ANP on mean blood pressure (MBP) and on NO system in spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY), and the role of the inducible isoform of nitric oxide synthase (iNOS). Material and Methods Protocol 1: animals were instilled with saline solution (0.05 ml/min) or with ANP (0.2 µg/kg/min) for an hour. MBP and urinary nitrites and nitrates (NOx) were assessed. The heart was extracted and iNOS and endothelial iNOS (eNOS) activity (with L-[U14C]-arginine) and expression (Western blot) were determined. Protocol 2: after adding ANP (1 µM), cANP(4-23) (NPR-C agonist, 1µM) or aminoguanidine (iNOS inhibitor, 1 µM) NOS activity in the right atrium and left ventricle of SHR and WKY was determined. Results Instillation with ANP reduced MBP and increased NOx in both groups. NOS activity was greater in SHR, and increased with the instillation of ANP. In SHR, greater eNOS and iNOS protein levels were observed, which were not modified by ANP. iNOS basal activity was greater in SHR. In the atrium, ANP interacts only with NPR-C in order to activate NOS, and NPR-A/B receptors would also take part in the ventricle. In this experimental model, the development and maintenance of hypertension could involve alterations in the interaction between both systems, ANP and NO.

18.
Biochem Biophys Res Commun ; 359(1): 180-6, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17532295

RESUMO

The aims were to evaluate the role of cardiovascular nitric oxide (NO)-system in C-type natriuretic peptide (CNP) actions and to investigate receptor types and signaling pathways involved in this interaction. Wistar rats were infused with saline or CNP. Mean arterial pressure (MAP) and nitrites and nitrates (NOx) excretion were determined. NO synthase (NOS) activity and NOS expression (Western blot) were analyzed in atria, ventricle and aorta. CNP decreased MAP and increased NOx excretion. CNP estimulated NOS activity, inducing no changes on cardiac and vascular endothelial NOS expression. NOS activity induced by CNP was abolished by suramin and calmidazoliumand but it is not modified by anantin. CNP would interact with NPR-C receptor coupled via G proteins leading to the activation Ca(2+)-calmodulin dependent endothelial NOS, increasing NO production which would induce the reduction in cardiac myocyte contractility and ANP synthesis and secretion in right atria and the relaxation of vascular smooth muscle.


Assuntos
Pressão Sanguínea/fisiologia , Coração/fisiologia , Peptídeo Natriurético Tipo C/administração & dosagem , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Coração/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
19.
Regul Pept ; 135(1-2): 63-8, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16712979

RESUMO

Atrial natriuretic peptide (ANP) exerts its hypotensive, natriuretic and diuretic effects, almost in part, through the activation of nitric oxide synthase (NOS). The aim was to investigate the natriuretic receptor type and the signaling cascade involved in NOS activation induced by ANP. Male Wistar rats were sacrificed and NOS activity was determined in kidney, aorta and heart with L-[U14C]-arginine, as substrate. ANP and cANP (4-23), a selective NPR-C ligand, increased NOS activity in all tissues. ANP induced a more marked activation in aorta and kidney than cANP (4-23), but no difference in atria NOS activation was observed. NOS activity induced by both peptides was blunted by nifedipine (L-type channel blocker) and calmidazolium (calmodulin antagonist) in heart and aorta. In kidney, nifedipine and calmidazolium abolished NOS activity stimulated by cANP (4-23) but only partially inhibited NOS activity elicited by ANP. Gi inhibition with pertussis toxin abolished NOS activity stimulated by ANP and cANP in atria but only partially inhibited the increased NOS activity induced by ANP and cANP in kidney, aorta and ventricle. Our results show that NPR-C receptor would mediate the activation of NOS by ANP in atria. In kidney, aorta and ventricle, NOS activation would also involve NPR-A and/or B. ANP would interact with NPR-C coupled via Gi to activation Ca2+ -dependent NOS.


Assuntos
Fator Natriurético Atrial/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Animais , Aorta/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Córtex Renal/metabolismo , Medula Renal/metabolismo , Masculino , Miocárdio/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar
20.
Life Sci ; 78(14): 1543-9, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16223511

RESUMO

OBJECTIVE: The aim of the study was to determine the possible role of NO-system activation in vascular and renal effects of the dopaminergic system and the probable interaction between both systems during acute volume expansion in rats. DESIGN AND METHODS: Expanded (10% bw) and non-expanded anaesthetized male Wistar rats were treated with haloperidol, a DA receptor antagonist (3 mg/kg bw, ip). Mean arterial pressure, diuresis, natriuresis, renal plasma flow, glomerular filtration rate, nitrites and nitrates excretion (NOx) were determined. NADPH diaphorase activity was measured using a histochemistry technique in kidney, aorta and renal arteries. NOS activity in kidney and aorta from expanded and non-expanded animals was determined with L-[U14C]-arginine substrate, in basal conditions and after DA (1 microM) administration. RESULTS: The hypotensive effect of L-arg and hypertension induced by L-NAME were not modified by haloperidol. This blocker reverted the increase in diuresis, natriuresis and RPF induced by L-arg in both groups. Dopaminergic blockade induced a decrease in NOx excretion and in NADPH-diaphorase activity in glomeruli, proximal tubule and medullar collecting duct and in endothelium and vascular smooth muscle of renal arteries. DA induced an increase in NOS activity in renal medulla and cortex in both groups, but no changes in the aorta were observed. CONCLUSIONS: Our results suggest that renal DA would be associated with the renal response induced by NO during extracellular volume expansion. NO-system activation would be one of the mechanisms involved in renal DA activity during saline load, but NO appears not to be involved in DA vascular effects.


Assuntos
Dopamina/metabolismo , Rim/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/fisiologia , Fluxo Plasmático Renal , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Arginina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Citrulina/análise , Diurese/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Líquido Extracelular/efeitos dos fármacos , Haloperidol/farmacologia , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Masculino , NADPH Desidrogenase/análise , NADPH Desidrogenase/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Natriurese/efeitos dos fármacos , Nitratos/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Nitritos/metabolismo , Ratos , Ratos Wistar , Artéria Renal/efeitos dos fármacos , Artéria Renal/enzimologia , Fluxo Plasmático Renal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA