Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Parasite Immunol ; 34(10): 492-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22817661

RESUMO

CBA mouse macrophages effectively control Leishmania major infection, yet are permissive to Leishmania amazonensis. It has been established that some Leishmania species are destroyed by reactive oxygen species (ROS). However, other species of Leishmania exhibit resistance to ROS or even down-modulate ROS production. We hypothesized that L. amazonensis-infected macrophages reduce ROS production soon after parasite-cell interaction. Employing a highly sensitive analysis technique based on chemiluminescence, the production of superoxide (O(·-)(2)) and hydrogen peroxide (H(2)O(2)) by L. major- or L. amazonensis-infected CBA macrophages were measured. L. major induces macrophages to release levels of (O(·-)(2)) 3·5 times higher than in uninfected cells. This (O(·-)(2)) production is partially dependent on NADPH oxidase (NOX) type 2. The level of accumulated H(2)O(2) is 20 times higher in L. major-than in L. amazonensis-infected cells. Furthermore, macrophages stimulated with L. amazonensis release amounts of ROS similar to uninfected cells. These findings support previous studies showing that CBA macrophages are effective in controlling L. major infection by a mechanism dependent on both (O(·-)(2)) production and H(2)O(2) generation. Furthermore, these data reinforce the notion that L. amazonensis survive inside CBA macrophages by reducing ROS production during the phagocytic process.


Assuntos
Leishmania mexicana/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Peróxido de Hidrogênio/análise , Leishmania/imunologia , Leishmania major/imunologia , Medições Luminescentes , Camundongos , Camundongos Endogâmicos CBA , NADPH Oxidases/metabolismo , Superóxidos/análise
2.
Peptides ; 29(9): 1505-13, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18554751

RESUMO

Here, we described the expression and characterization of the recombinant toxin LTx2, which was previously isolated from the venomous cDNA library of a Brazilian spider, Lasiodora sp. (Mygalomorphae, Theraphosidae). The recombinant toxin found in the soluble and insoluble fractions was purified by reverse phase high-performance liquid chromatography (HPLC). Ca2+ imaging analysis revealed that the recombinant LTx2 acts on calcium channels of BC3H1 cells, blocking L-type calcium channels.


Assuntos
Neurotoxinas/biossíntese , Neurotoxinas/farmacologia , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Animais , Cálcio/fisiologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Linhagem Celular , Clonagem Molecular , Receptores de Inositol 1,4,5-Trifosfato/biossíntese , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Venenos de Aranha/biossíntese , Aranhas/química
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;39(3): 355-363, Mar. 2006. tab
Artigo em Inglês | LILACS | ID: lil-421363

RESUMO

Glutathione is the major intracellular antioxidant thiol protecting mammalian cells against oxidative stress induced by oxygen- and nitrogen-derived reactive species. In trypanosomes and leishmanias, trypanothione plays a central role in parasite protection against mammalian host defence systems by recycling trypanothione disulphide by the enzyme trypanothione reductase. Although Kinetoplastida parasites lack glutathione reductase, they maintain significant levels of glutathione. The aim of this study was to use Leishmania donovani trypanothione reductase gene mutant clones and different Leishmania species to examine the role of these two individual thiol systems in the protection mechanism against S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a nitrogen-derived reactive species donor. We found that the resistance to SNAP of different species of Leishmania was inversely correlated with their glutathione concentration but not with their total low-molecular weight thiol content (about 0.18 nmol/10(7) parasites, regardless Leishmania species). The glutathione concentration in L. amazonensis, L. donovani, L. major, and L. braziliensis were 0.12, 0.10, 0.08, and 0.04 nmol/10(7) parasites, respectively. L. amazonensis, that have a higher level of glutathione, were less susceptible to SNAP (30 and 100 µM). The IC50 values of SNAP determined to L. amazonensis, L. donovani, L. major, and L. braziliensis were 207.8, 188.5, 160.9, and 83 µM, respectively. We also observed that L. donovani mutants carrying only one trypanothione reductase allele had a decreased capacity to survive (40 percent) in the presence of SNAP (30-150 µM). In conclusion, the present data suggest that both antioxidant systems, glutathione and trypanothione/trypanothione reductase, participate in protection of Leishmania against the toxic effect of nitrogen-derived reactive species.


Assuntos
Animais , Glutationa/metabolismo , Leishmania/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Penicilamina/análogos & derivados , Fluoresceínas , Leishmania/enzimologia , Peso Molecular , NADH NADPH Oxirredutases/genética , Ouabaína/análogos & derivados , Penicilamina/toxicidade , Especificidade da Espécie
4.
Braz J Med Biol Res ; 39(3): 355-63, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16501815

RESUMO

Glutathione is the major intracellular antioxidant thiol protecting mammalian cells against oxidative stress induced by oxygen- and nitrogen-derived reactive species. In trypanosomes and leishmanias, trypanothione plays a central role in parasite protection against mammalian host defence systems by recycling trypanothione disulphide by the enzyme trypanothione reductase. Although Kinetoplastida parasites lack glutathione reductase, they maintain significant levels of glutathione. The aim of this study was to use Leishmania donovani trypanothione reductase gene mutant clones and different Leishmania species to examine the role of these two individual thiol systems in the protection mechanism against S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a nitrogen-derived reactive species donor. We found that the resistance to SNAP of different species of Leishmania was inversely correlated with their glutathione concentration but not with their total low-molecular weight thiol content (about 0.18 nmol/10(7) parasites, regardless Leishmania species). The glutathione concentration in L. amazonensis, L. donovani, L. major, and L. braziliensis were 0.12, 0.10, 0.08, and 0.04 nmol/10(7) parasites, respectively. L. amazonensis, that have a higher level of glutathione, were less susceptible to SNAP (30 and 100 microM). The IC50 values of SNAP determined to L. amazonensis, L. donovani, L. major, and L. braziliensis were 207.8, 188.5, 160.9, and 83 microM, respectively. We also observed that L. donovani mutants carrying only one trypanothione reductase allele had a decreased capacity to survive (approximately 40%) in the presence of SNAP (30-150 microM). In conclusion, the present data suggest that both antioxidant systems, glutathione and trypanothione/trypanothione reductase, participate in protection of Leishmania against the toxic effect of nitrogen-derived reactive species.


Assuntos
Glutationa/metabolismo , Leishmania/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Penicilamina/análogos & derivados , Animais , Fluoresceínas , Leishmania/enzimologia , Peso Molecular , NADH NADPH Oxirredutases/genética , Ouabaína/análogos & derivados , Penicilamina/toxicidade , Especificidade da Espécie
5.
Parasitology ; 118 ( Pt 6): 559-66, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10406034

RESUMO

The aim of this investigation was to examine whether macrophage and Leishmania major glutathione were involved in either host or parasite protection against NO cytotoxicity. Buthionine sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthase, caused a complete and irreversible depletion of macrophage glutathione, but only a 20% and reversible decrease in L. major glutathione. Glutathione-depleted macrophages, when activated with IFN-gamma/LPS, released less than 60% of the NO produced by untreated macrophages, resulting in a corresponding decrease in their leishmanicidal activity. BSO-treated macrophages were more susceptible to the cytotoxic effects of the NO donor SNAP. Treatment of macrophages with 1,3-bis(chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase and trypanothione reductase or with Br-Octane, a glutathione-S-transferase substrate, resulted in a transient decrease in glutathione levels and did not increase the susceptibility of the macrophages to SNAP. Treatment of the promastigote forms of L. major with BCNU resulted in an 80% decrease in total glutathione concentration with no concomitant change in viability. However, this treatment rendered the parasites more susceptible to SNAP. Finally, macrophage glutathione protected the internalized L. major from SNAP. Overall, these results demonstrate that glutathione is an essential protective component against NO cytotoxicity on both macrophages and parasites.


Assuntos
Glutationa/metabolismo , Leishmania major/metabolismo , Macrófagos Peritoneais/metabolismo , Óxido Nítrico/metabolismo , Animais , Butionina Sulfoximina/farmacologia , Carmustina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutationa/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/antagonistas & inibidores , Penicilamina/análogos & derivados , Penicilamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA