Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cardiovasc Res ; 104(3): 456-66, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344365

RESUMO

AIMS: Cardiomyocyte swelling occurs in multiple pathological situations and has been associated with contractile dysfunction, cell death, and enhanced propensity to arrhythmias. We investigate whether hypotonic swelling promotes nitric oxide (NO) release in cardiomyocytes, and whether it impacts on swelling-induced contractile dysfunction. METHODS AND RESULTS: Superfusing rat cardiomyocytes with a hypotonic solution (HS; 217 mOsm), increased cell volume, reduced myocyte contraction and Ca(2+) transient, and increased NO-sensitive 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. When cells were exposed to HS + 2.5 mM of the NO synthase inhibitor l-NAME, cell swelling occurred in the absence of NO release. Swelling-induced NO release was also prevented by the nitric oxide synthase 1 (NOS1) inhibitor, nitroguanidine, and significantly reduced in NOS1 knockout mice. Additionally, colchicine (inhibitor of microtubule polymerization) prevented the increase in DAF-FM fluorescence induced by HS, indicating that microtubule integrity is necessary for swelling-induced NO release. The swelling-induced negative inotropic effect was exacerbated in the presence of either l-NAME, nitroguandine, the guanylate cyclase inhibitor, ODQ, or the PKG inhibitor, KT5823, suggesting that NOS1-derived NO provides contractile support via a cGMP/PKG-dependent mechanism. Indeed, ODQ reduced Ca(2+) wave velocity and both ODQ and KT5823 reduced the HS-induced increment in ryanodine receptor (RyR2, Ser2808) phosphorylation, suggesting that in this context, cGMP/PKG may contribute to preserve contractile function by enhancing sarcoplasmic reticulum Ca(2+) release. CONCLUSIONS: Our findings suggest a novel mechanism for NO release in cardiomyocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hypotonic swelling.


Assuntos
Citoesqueleto/fisiologia , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Osmorregulação , Animais , GMP Cíclico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Contração Miocárdica , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos Wistar
2.
Endocr Pathol ; 21(3): 154-60, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20473646

RESUMO

Pituitary tumors are usually less vascularized than the normal pituitary, and the role of angiogenesis in these adenomas is contentious. Appraisal of microvascular density and expression of the potent angiogenic vascular endothelial growth factor (VEGF) by immunohistochemistry has yielded controversial results, as a broad spectrum of immunostaining can be found. We determined the protein expression of VEGF and CD31, an endothelial marker, in a series of 56 surgically removed pituitary adenomas using Western blot assay. Prolactinomas had higher VEGF protein expression compared to nonfunctioning or ACTH- and GH-secreting adenomas, while CD31 was similar in the different adenoma histotypes. VEGF and CD31 were not affected by sex, age, years of adenoma evolution, or proliferation rate (Ki67 and PCNA) for all adenoma types. Only in nonfunctioning adenomas CD31 concentration increased significantly with age. There was a positive correlation between CD31 and VEGF expression when all adenoma histotypes were considered, or when prolactinomas and nonfunctioning adenomas were evaluated separately. The positive association of VEGF and CD31 expression suggests the participation of angiogenesis in adenoma development, while epithelial cell proliferation in pituitary tumors is not directly related to VEGF or CD31 expression, and other factors, such as primary genetic alterations may be involved.


Assuntos
Adenoma/metabolismo , Biomarcadores Tumorais/análise , Neoplasias Hipofisárias/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adulto , Western Blotting , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA