RESUMO
Introduction: The COVID-19 pandemic has prompted global research efforts to reduce infection impact, highlighting the potential of cross-disciplinary collaboration to enhance research quality and efficiency. Methods: At the FMUSP-HC academic health system, we implemented innovative flow management routines for collecting, organizing and analyzing demographic data, COVID-related data and biological materials from over 4,500 patients with confirmed SARS-CoV-2 infection hospitalized from 2020 to 2022. This strategy was mainly planned in three areas: organizing a database with data from the hospitalizations; setting-up a multidisciplinary taskforce to conduct follow-up assessments after discharge; and organizing a biobank. Additionally, a COVID-19 curated collection was created within the institutional digital library of academic papers to map the research output. Results: Over the course of the experience, the possible benefits and challenges of this type of research support approach were identified and discussed, leading to a set of recommended strategies to enhance collaboration within the research institution. Demographic and clinical data from COVID-19 hospitalizations were compiled in a database including adults and a minority of children and adolescents with laboratory confirmed COVID-19, covering 2020-2022, with approximately 350 fields per patient. To date, this database has been used in 16 published studies. Additionally, we assessed 700 adults 6 to 11 months after hospitalization through comprehensive, multidisciplinary in-person evaluations; this database, comprising around 2000 fields per subject, was used in 15 publications. Furthermore, thousands of blood samples collected during the acute phase and follow-up assessments remain stored for future investigations. To date, more than 3,700 aliquots have been used in ongoing research investigating various aspects of COVID-19. Lastly, the mapping of the overall research output revealed that between 2020 and 2022 our academic system produced 1,394 scientific articles on COVID-19. Discussion: Research is a crucial component of an effective epidemic response, and the preparation process should include a well-defined plan for organizing and sharing resources. The initiatives described in the present paper were successful in our aim to foster large-scale research in our institution. Although a single model may not be appropriate for all contexts, cross-disciplinary collaboration and open data sharing should make health research systems more efficient to generate the best evidence.
Assuntos
COVID-19 , Adulto , Adolescente , Criança , Humanos , SARS-CoV-2 , Pandemias , América LatinaRESUMO
Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_ΔSTP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_ΔSTP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-ΔSTP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_ΔSTP+Alum protected adult mice upon viral challenge. Collectively, the ZK_ΔSTP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.
Assuntos
Compostos de Alúmen , Vacinas de DNA , Vacinas Virais , Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Envelope Viral/genética , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Adjuvantes FarmacêuticosRESUMO
[This corrects the article DOI: 10.3389/fimmu.2024.1307546.].
RESUMO
Despite being subject to lower AIDS-related mortality rates and having a higher life expectancy, patients with HIV are more prone to develop non-AIDS events. A low CD4+/CD8+ ratio during antiretroviral therapy identifies people with heightened immune senescence and increased risk of mortality. In clinical practice, finding determinants of a low CD4+/CD8+ ratio may be useful for identifying patients who require close monitoring due to an increased risk of comorbidities and death. We performed a prospective study on the evolution of the CD4+/CD8+ ratio in 60 patients infected with HIV (80% males), who were subjected to two different antiretroviral regimens: early and deferred therapy. The initial CD4+/CD8+ ratio was ≤1 for 70% of the patients in both groups. Older age, CD4+ cell count at inclusion, Nadir CD8+T-cell count, and Initial CD4+/CD8+ ratio ≤ 1 were risk factors for lack of ratio recovery. In the multivariate analysis, a CD4+/CD8+ ratio > 1 at the start of the treatment was found to be a determinant factor in maintaining a CD4+/CD8+ ratio > 1. The nadir CD4+T-cell count was lower in the deferred therapy group (p=0.004), and the last CD4+/CD8+ ratio ≤1 was not associated with comorbidities. Ratio recovery was not associated with the duration of HIV infection, time without therapy, or absence of AIDS incidence. A greater improvement was observed in patients treated early (p=0.003). In contrast, the slope of increase was slower in patients who deferred treatment. In conclusion, the increase in the CD4+/CD8+ ratio occurred mostly for patients undergoing early strategy treatment and its extension did not seem to be related to previous HIV-related factors.
Assuntos
Síndrome da Imunodeficiência Adquirida , Fármacos Anti-HIV , Infecções por HIV , Masculino , Humanos , Feminino , Infecções por HIV/complicações , Estudos Prospectivos , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD8-Positivos , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos , Fármacos Anti-HIV/uso terapêutico , Carga ViralRESUMO
In this study, high-throughput sequencing of 16S rRNA amplicons and predictive PICRUSt functional profiles were used to perform a comprehensive analysis of the temporal bacterial distribution and metabolic functions of 19 bimonthly samples collected from July 2019 to January 2020 in the surface water of Billings Reservoir, São Paulo. The results revealed that most of the bacterial 16S rRNA gene sequences belonged to Cyanobacteria and Proteobacteria, which accounted for more than 58% of the total bacterial abundance. Species richness and evenness indices were highest in surface water from summer samples (January 2020), followed by winter (July 2019) and spring samples (September and November 2019). Results also showed that the highest concentrations of sulfate (SO4–2), phosphate (P), ammonia (NH3), and nitrate (NO3-) were detected in November 2019 and January 2020 compared with samples collected in July and September 2019 (P < 0.05). Principal component analysis suggests that physicochemical factors such as pH, DO, temperature, and NH3 are the most important environmental factors influencing spatial and temporal variations in the community structure of bacterioplankton. At the genus level, 18.3% and 9.9% of OTUs in the July and September 2019 samples, respectively, were assigned to Planktothrix, while 14.4% and 20% of OTUs in the November 2019 and January 2020 samples, respectively, were assigned to Microcystis. In addition, PICRUSt metabolic analysis revealed increasing enrichment of genes in surface water associated with multiple metabolic processes rather than a single regulatory mechanism. This is the first study to examine the temporal dynamics of bacterioplankton and its function in Billings Reservoir during the winter, spring, and summer seasons. The study provides comprehensive reference information on the effects of an artificial habitat on the bacterioplankton community that can be used to interpret the results of studies to evaluate and set appropriate treatment targets.
RESUMO
ABSTRACT Despite being subject to lower AIDS-related mortality rates and having a higher life expectancy, patients with HIV are more prone to develop non-AIDS events. A low CD4+/CD8+ ratio during antiretroviral therapy identifies people with heightened immune senescence and increased risk of mortality. In clinical practice, finding determinants of a low CD4+/CD8+ ratio may be useful for identifying patients who require close monitoring due to an increased risk of comorbidities and death. We performed a prospective study on the evolution of the CD4+/CD8+ ratio in 60 patients infected with HIV (80% males), who were subjected to two different antiretroviral regimens: early and deferred therapy. The initial CD4+/CD8+ ratio was ≤1 for 70% of the patients in both groups. Older age, CD4+ cell count at inclusion, Nadir CD8+T-cell count, and Initial CD4+/CD8+ ratio ≤ 1 were risk factors for lack of ratio recovery. In the multivariate analysis, a CD4+/CD8+ ratio > 1 at the start of the treatment was found to be a determinant factor in maintaining a CD4+/CD8+ ratio > 1. The nadir CD4+T-cell count was lower in the deferred therapy group (p=0.004), and the last CD4+/CD8+ ratio ≤1 was not associated with comorbidities. Ratio recovery was not associated with the duration of HIV infection, time without therapy, or absence of AIDS incidence. A greater improvement was observed in patients treated early (p=0.003). In contrast, the slope of increase was slower in patients who deferred treatment. In conclusion, the increase in the CD4+/CD8+ ratio occurred mostly for patients undergoing early strategy treatment and its extension did not seem to be related to previous HIV-related factors.
RESUMO
OBJECTIVE: COVID-19 is associated with an elevated risk of thromboembolism and excess mortality. Difficulties with best anticoagulation practices and their implementation motivated the current analysis of COVID-19 patients who developed Venous Thromboembolism (VTE). METHOD: This is a post-hoc analysis of a COVID-19 cohort, described in an economic study already published. The authors analyzed a subset of patients with confirmed VTE. We described the characteristics of the cohort, such as demographics, clinical status, and laboratory results. We tested differences amid two subgroups of patients, those with VTE or not, with the competitive risk Fine and Gray model. RESULTS: Out of 3186 adult patients with COVID-19, 245 (7.7%) were diagnosed with VTE, 174 (5.4%) of them during admission to the hospital. Four (2.3% of these 174) did not receive prophylactic anticoagulation and 19 (11%) discontinued anticoagulation for at least 3 days, resulting in 170 analyzed. During the first week of hospitalization, the laboratory most altered results were C-reactive protein and D-dimer. Patients with VTE were more critical, had a higher mortality rate, worse SOFA score, and, on average, 50% longer hospital stay. CONCLUSION: Proven VTE incidence in this severe COVID-19 cohort was 7.7%, despite 87% of them complying completely with VTE prophylaxis. The clinician must be aware of the diagnosis of VTE in COVID-19, even in patients receiving proper prophylaxis.
Assuntos
COVID-19 , Tromboinflamação , Tromboembolia Venosa , Humanos , Adulto , COVID-19/diagnóstico , COVID-19/epidemiologia , América Latina/epidemiologia , Hospitais Públicos , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle , Incidência , Fatores de Risco , Anticoagulantes/administração & dosagem , Masculino , Feminino , Tempo de InternaçãoRESUMO
Sézary syndrome (SS) is a rare and aggressive type of cutaneous T-cell lymphoma, with an abnormal inflammatory response in affected skin. The cytokines IL-1B and IL-18, as key signaling molecules in the immune system, are produced in an inactive form and cleave to the active form by inflammasomes. In this study, we assessed the skin, serum, peripheral mononuclear blood cell (PBMC) and lymph-node samples of SS patients and control groups (healthy donors (HDs) and idiopathic erythroderma (IE) nodes) to investigate the inflammatory markers IL-1B and IL-18 at the protein and transcript expression levels, as potential markers of inflammasome activation. Our findings showed increased IL-1B and decreased IL-18 protein expression in the epidermis of SS patients; however, in the dermis layer, we detected increased IL-18 protein expression. In the lymph nodes of SS patients at advanced stages of the disease (N2/N3), we also detected an enhancement of IL-18 and a downregulation of IL-1B at the protein level. Moreover, the transcriptomic analysis of the SS and IE nodes confirmed the decreased expression of IL1B and NLRP3, whereas the pathway analysis indicated a further downregulation of IL1B-associated genes. Overall, the present findings showed compartmentalized expressions of IL-1B and IL-18 and provided the first evidence of their imbalance in patients with Sézary syndrome.
Assuntos
Interleucina-18 , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Dermatite Esfoliativa/metabolismo , Inflamassomos/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Leucócitos Mononucleares/metabolismo , Síndrome de Sézary/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/metabolismoRESUMO
Obesity is increasing in incidence worldwide, especially in women, which can affect the outcome of pregnancy. During this period, viral infections represent a risk to the mother, the placental unit, and the fetus. The Zika virus (ZIKV) outbreak in Brazil has been the cause of congenital Zika syndrome (CZS), with devastating consequences such as microcephaly in newborns. Herein, we analyzed the impact of maternal overweight/obesity on the antiviral factors' expression in the placental tissue of Zika-infected mothers. We accessed placentas from women with and without obesity from 34 public health units (São Paulo) and from Zika-infected mothers with and without obesity from the Clinical Cohort Study of ZIKV pregnant women (Rio de Janeiro, Brazil). We first verified that obesity, without infection, did not alter the constitutive transcriptional expression of antiviral factors or IFN type I/III expression. Interestingly, obesity, when associated with ZIKV infection, showed a decreased transcriptional expression of RIG-I and IFIH1 (MDA-5 protein precursor gene). At the protein level, we also verified a decreased RIG-I and IRF-3 expression in the decidual placenta from the Zika-infected obese group, regardless of microcephaly. This finding shows, for the first time, that obesity associated with ZIKV infection leads to an impaired type I IFN downstream signaling pathway in the maternal-fetal interface.
Assuntos
Interferon Tipo I , Microcefalia , Infecção por Zika virus , Zika virus , Recém-Nascido , Gravidez , Feminino , Humanos , Antivirais , Gestantes , Infecção por Zika virus/complicações , Estudos de Coortes , Brasil/epidemiologia , Placenta , ObesidadeRESUMO
Abstract Introduction Seasonal influenza A (H3N2) virus is an important cause of morbidity and mortality in the last 50 years in population that is greater than the impact of H1N1. Data assessing immunogenicity and safety of this virus component in juvenile systemic lupus erythematosus (JSLE) is lacking in the literature. Objective To evaluate short-term immunogenicity and safety of influenza A/Singapore (H3N2) vaccine in JSLE. Methods 24 consecutive JSLE patients and 29 healthy controls (HC) were vaccinated with influenza A/Singapore/ INFIMH-16-0019/2016(H3N2)-like virus. Influenza A (H3N2) seroprotection (SP), seroconversion (SC), geometric mean titers (GMT), factor increase in GMT (FI-GMT) titers were assessed before and 4 weeks post-vaccination. Disease activity, therapies and adverse events (AE) were also evaluated. Results JSLE patients and controls were comparable in current age [14.5 (10.1-18.3) vs. 14 (9-18.4) years, p = 0.448] and female sex [21 (87.5%) vs. 19 (65.5%), p = 0.108]. Before vaccination, JSLE and HC had comparable SP rates [22 (91.7%) vs. 25 (86.2%), p = 0.678] and GMT titers [102.3 (95% CI 75.0-139.4) vs. 109.6 (95% CI 68.2-176.2), p = 0.231]. At D30, JSLE and HC had similar immune response, since no differences were observed in SP [24 (100%) vs. 28 (96.6%), p = 1.000)], SC [4 (16.7%) vs. 9 (31.0%), p = 0.338), GMT [162.3 (132.9-198.3) vs. 208.1 (150.5-287.8), p = 0.143] and factor increase in GMT [1.6 (1.2-2.1) vs. 1.9 (1.4-2.5), p = 0.574]. SLEDAI-2K scores [2 (0-17) vs. 2 (0-17), p = 0.765] and therapies remained stable throughout the study. Further analysis of possible factors influencing vaccine immune response among JSLE patients demonstrated similar GMT between patients with SLEDAI < 4 compared to SLEDAI ≥ 4 ( p = 0.713), as well as between patients with and without current use of prednisone ( p = 0.420), azathioprine ( p = 1.0), mycophenolate mofetil ( p = 0.185), and methotrexate ( p = 0.095). No serious AE were reported in both groups and most of them were asymptomatic (58.3% vs. 44.8%, p = 0.958). Local and systemic AE were alike in both groups ( p > 0.05). Conclusion This is the first study that identified adequate immune protection against H3N2-influenza strain with additional vaccine-induced increment of immune response and an adequate safety profile in JSLE. ( www.clinicaltrials.gov , NCT03540823).
RESUMO
Abstract Objective COVID-19 is associated with an elevated risk of thromboembolism and excess mortality. Difficulties with best anticoagulation practices and their implementation motivated the current analysis of COVID-19 patients who developed Venous Thromboembolism (VTE). Method This is a post-hoc analysis of a COVID-19 cohort, described in an economic study already published. The authors analyzed a subset of patients with confirmed VTE. We described the characteristics of the cohort, such as demographics, clinical status, and laboratory results. We tested differences amid two subgroups of patients, those with VTE or not, with the competitive risk Fine and Gray model. Results Out of 3186 adult patients with COVID-19, 245 (7.7%) were diagnosed with VTE, 174 (5.4%) of them during admission to the hospital. Four (2.3% of these 174) did not receive prophylactic anticoagulation and 19 (11%) discontinued anticoagulation for at least 3 days, resulting in 170 analyzed. During the first week of hospitalization, the laboratory most altered results were C-reactive protein and D-dimer. Patients with VTE were more critical, had a higher mortality rate, worse SOFA score, and, on average, 50% longer hospital stay. Conclusion Proven VTE incidence in this severe COVID-19 cohort was 7.7%, despite 87% of them complying completely with VTE prophylaxis. The clinician must be aware of the diagnosis of VTE in COVID-19, even in patients receiving proper prophylaxis.
RESUMO
COVID-19, the infectious disease caused by SARS-CoV-2, has spread on a pandemic scale. The viral infection can evolve asymptomatically or can generate severe symptoms, influenced by the presence of comorbidities. Lymphopenia based on the severity of symptoms in patients affected with COVID-19 is frequent. However, the profiles of CD4+ and CD8+ T cells regarding cytotoxicity and antiviral factor expression have not yet been completely elucidated in acute SARS-CoV-2 infections. The purpose of this study was to evaluate the phenotypic and functional profile of T lymphocytes in patients with moderate and severe/critical COVID-19. During the pandemic period, we analyzed a cohort of 62 confirmed patients with SARS-CoV-2 (22 moderate cases and 40 severe/critical cases). Notwithstanding lymphopenia, we observed an increase in the expression of CD28, a co-stimulator molecule, and activation markers (CD38 and HLA-DR) in T lymphocytes as well as an increase in the frequency of CD4+ T cells, CD8+ T cells, and NK cells that express the immunological checkpoint protein PD-1 in patients with a severe/critical condition compared to healthy controls. Regarding the cytotoxic profile of peripheral blood mononuclear cells, an increase in the response of CD4+ T cells was already observed at the baseline level and scarcely changed upon PMA and Ionomycin stimulation. Meanwhile, CD8+ T lymphocytes decreased the cytotoxic response, evidencing a profile of exhaustion in patients with severe COVID-19. As observed by t-SNE, there were CD4+ T-cytotoxic and CD8+ T with low granzyme production, evidencing their dysfunction in severe/critical conditions. In addition, purified CD8+ T lymphocytes from patients with severe COVID-19 showed increased constitutive expression of differentially expressed genes associated with the caspase pathway, inflammasome, and antiviral factors, and, curiously, had reduced expression of TNF-α. The cytotoxic profile of CD4+ T cells may compensate for the dysfunction/exhaustion of TCD8+ in acute SARS-CoV-2 infection. These findings may provide an understanding of the interplay of cytotoxicity between CD4+ T cells and CD8+ T cells in the severity of acute COVID-19 infection.
Assuntos
COVID-19 , Linfopenia , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Linfopenia/metabolismo , Antivirais/metabolismoRESUMO
Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients' cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.
Assuntos
COVID-19 , Adenosina/metabolismo , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Humanos , Purinas , Índice de Gravidade de Doença , Transdução de SinaisRESUMO
The literature presents several reports of the impact of glycemic control and diabetes in the inflammatory and coagulatory response during coronavirus disease 2019 (COVID-19). Nevertheless, the long-term impact of the COVID-19 in diabetic patients is still to be explored. Therefore, we recruited 128 patients and performed a longitudinal analysis on COVID-19-associated biomarkers of patients with COVID-19, tree and 6 months after COVID-19 recovery and put into perspective the possible long-term complication generated after COVID-19. In our investigation, we failed to verify any long-term modification on inflammatory biomarkers, but detected an increase in the glycemia and glycated hemoglobin in patients without any pre-existing history or diagnosis of diabetes (non-diabetic patients). Although diabetic and non-diabetic patients presented elevated levels of glycated hemoglobin, the c-peptide test indicated a normal beta cell function in all patients.
Assuntos
COVID-19 , Diabetes Mellitus , Biomarcadores , Glicemia/análise , Hemoglobinas Glicadas/análise , HumanosRESUMO
Here, we describe the bacterial diversity and physicochemical properties in freshwater samples from the surface and bottom layers of the Billings Reservoir, the largest open-air storage ecosystem in the São Paulo (Brazil) metropolitan area. Forty-four samples (22 from the surface and 22 from the bottom layers) were characterized based on 16S rRNA gene analysis using Illumina MiSeq. Taxonomical composition revealed an abundance of the Cyanobacteria phylum, followed by Proteobacteria, which were grouped into 1903 and 2689 different genera in the surface and the deep-water layers, respectively. Chroobacteria, Actinobacteria, Betaproteobacteria, and Alphaproteobacteria were the most dominant classes. The Shannon diversity index was in the range of 2.3-5.39 and 4.04-6.86 in the surface and bottom layers, respectively. Flavobacterium was the most predominant pathogenic genus. Temperature and phosphorus concentrations were among the most influential factors in shaping the microbial communities of both layers. Predictive functional analysis suggests that the reservoir is enriched in motility genes involved in flagellar assembly. The overall results provide new information on the diversity composition, ecological function, and health risks of the bacterial community detected in the Billings freshwater reservoir. The broad bacterial diversity indicates that the bacterioplankton communities in the reservoir were involved in multiple essential environmental processes.
RESUMO
Small RNAs (sRNAs) and microRNAs (miRNAs) are small endogenous noncoding single-stranded RNAs that regulate gene expression in eukaryotes. Experiments in mice and humans have revealed that a typical small RNA can affect the expression of a wide range of genes, implying that small RNAs function as global regulators. Here, we used small RNA deep sequencing to investigate how jararhagin, a metalloproteinase toxin produced from the venom of Bothrops jararaca, affected mmu-miRNAs expression in mice 2 hours (Jar 2hrs) and 24 hours (Jar 24hrs) after injection compared to PBS control. The findings revealed that seven mmu-miRNAs were substantially differentially expressed (p value (p (Corr) cut-off 0.05, fold change ≥ 2) at 2 hrs after jararhagin exposure and that the majority of them were upregulated when compared to PBS. In contrast to these findings, a comparison of Jar 24hrs vs. PBS 24hrs demonstrated that the majority of identified mmu-miRNAs were downregulated. Furthermore, the studies demonstrated that mmu-miRNAs can target the expression of several genes involved in the MAPK signaling pathway. The steady antithetical regulation of mmu-miRNAs may correlate with the expression of genes that trigger apoptosis via MAPK in the early stages, and this effect intensifies with time. The findings expand our understanding of the effects of jararhagin on local tissue lesions at the molecular level.
Assuntos
Bothrops , Venenos de Crotalídeos , MicroRNAs , Animais , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Humanos , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Veneno de Bothrops jararacaRESUMO
Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.
Assuntos
Dermatite Atópica , MicroRNAs , Adulto , Linfócitos T CD4-Positivos , Epigênese Genética , Humanos , Imunoglobulina G/genética , Interleucinas , MicroRNAs/genética , Interleucina 22RESUMO
γδT cells mature in the human thymus, and mainly produce IL-17A or IFN-γ, but can also produce IL-22 and modulate a variety of immune responses. Here, we aimed to evaluate whether IgG from AD patients (AD IgG) can functionally modulate thymic nonatopic γδT cells. Thymic tissues were obtained from 12 infants who had not had an atopic history. Thymocytes were cultured in mock condition, or in the presence of either AD IgG or therapeutic intravenous IgG (IVIg). Following these treatments, intracellular cytokine production, phenotype, and microRNA expression profiles were investigated. AD IgG could downregulate α4ß7, upregulate CLA, and induce the production of IFN-γ, IL-17, and IL-22 in γδT cells. Although both AD IgG and IVIg could directly interact with γδT cell membranes, AD IgG could reduce γδT cell apoptosis. AD IgG could upregulate nine miRNAs compared to IVIg, and six when compared to the mock condition. In parallel, some miRNAs were downregulated. Target gene prediction and functional analysis indicated that some target genes were enriched in the negative regulation of cellular transcription. This study shows that AD IgG influences the production of IL-17 and IL-22 by intrathymic nonatopic γδT cells, and demonstrates epigenetic implications mediated by miRNAs.