Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Food ; 2(4): 264-273, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37118463

RESUMO

Brazilian grain production increased more than fourfold from 1980 to 2016. The grain boom was achieved primarily by soybean-corn double cropping and cropland expansion-both show changing spatiotemporal patterns since the 1980s. Here, we quantified the contributions of these two strategies to corn and soybean production in Brazil using municipality-level data from 1980 to 2016. We found the contribution of double cropping to the grain boom steadily increased to 35% and the largest driving force was the increasing demand for grain export. While double cropping dominated the conventional agricultural regions, cropland expansion was still the major strategy in agricultural frontiers such as the Centre-West and Matopiba. The implementation of double cropping offset the equivalent of 76.7 million ha of Brazilian arable land for grain production from 2003 to 2016. Double cropping in Brazil has the potential to help alleviate land burdens in other pantropical countries with increasing global food demand.

2.
Sci Total Environ ; 745: 140965, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758741

RESUMO

Research on the carbon cycle of coastal marine systems has been of wide concern recently. Accurate knowledge of the temporal and spatial distributions of sea-surface partial pressure (pCO2) can reflect the seasonal and spatial heterogeneity of CO2 flux and is, therefore, essential for quantifying the ocean's role in carbon cycling. However, it is difficult to use one model to estimate pCO2 and determine its controlling variables for an entire region due to the prominent spatiotemporal heterogeneity of pCO2 in coastal areas. Cubist is a commonly-used model for zoning; thus, it can be applied to the estimation and regional analysis of pCO2 in the Gulf of Mexico (GOM). A cubist model integrated with satellite images was used here to estimate pCO2 in the GOM, a river-dominated coastal area, using satellite products, including chlorophyll-a concentration (Chl-a), sea-surface temperature (SST) and salinity (SSS), and the diffuse attenuation coefficient at 490 nm (Kd-490). The model was based on a semi-mechanistic model and integrated the high-accuracy advantages of machine learning methods. The overall performance showed a root mean square error (RMSE) of 8.42 µatm with a coefficient of determination (R2) of 0.87. Based on the heterogeneity of environmental factors, the GOM area was divided into 6 sub-regions, consisting estuaries, near-shores, and open seas, reflecting a gradient distribution of pCO2. Factor importance and correlation analyses showed that salinity, chlorophyll-a, and temperature are the main controlling environmental variables of pCO2, corresponding to both biological and physical effects. Seasonal changes in the GOM region were also analyzed and explained by changes in the environmental variables. Therefore, considering both high accuracy and interpretability, the cubist-based model was an ideal method for pCO2 estimation and spatiotemporal heterogeneity analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA