Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(32): 78139-78151, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37264169

RESUMO

In this work, different carbonaceous materials based on floated sludge from a poultry industry wastewater treatment plant (PI-WTP) were synthesized. These materials were characterized and investigated in methylene blue dye (MB) adsorption. The influences of the initial pH solution, adsorbent dosage, kinetics, equilibrium, and thermodynamics were evaluated in the adsorption experiments. A simulation of a real textile effluent was also carried out to evaluate the adsorbent. The results of the adsorbents' characterization demonstrated that adding ZnCl2 + lime, followed by pyrolysis and acid leaching, significantly improved the material's properties, leading to abundant porosity and high surface area. The adsorption experiments indicated that the natural pH of the solution (8.0) and the AC-II dosage of 0.75 g L-1 are optimal for MB removal. Elovich and Sips' models (with a maximum adsorption capacity of 221.02 mg g-1 at 328 K) best fitted the experimental kinetic and equilibrium data, respectively. The adsorption process is spontaneous and endothermic according to thermodynamic parameters. The discoloration efficiency of the simulated effluent was 67.8%. In conclusion, the floated sludge, a residue produced on a large scale that needs to be disposed of correctly, can be converted into a value-added material (carbonaceous adsorbent) and applied to treat colored effluents.


Assuntos
Esgotos , Poluentes Químicos da Água , Animais , Esgotos/química , Azul de Metileno/química , Aves Domésticas , Adsorção , Poluentes Químicos da Água/química , Termodinâmica , Cinética , Concentração de Íons de Hidrogênio
2.
Environ Technol ; 43(16): 2418-2429, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33499777

RESUMO

In this work, coal bottom ash was modified by alkaline fusion route in order to improve its pore properties and make it a potential adsorbent to remove crystal violet dye from aqueous medium. The solids were characterized and posteriorly subjected to kinetic, isotherm, and thermodynamic studies, as well as regenerated and reused for five adsorption tests. The alkaline fusion step resulted in the amorphization of material and generation of high surface area (102 m 2 g -1) and pore volume (0.180 cm 3 g-1), resulting in superior performance compared to the raw material. Kinetic and equilibrium studies showed that the adsorption process was better adjusted by the pseudo-second order and Langmuir models, respectively. The maximum adsorption capacity at equilibrium was 177. 37 mg g-1, with the adsorptive step occurring spontaneously and endothermically. The adsorbent maintained notable levels of dye removal after five consecutive cycles of thermal regeneration and reuse. Besides, the adsorbent was able to remove 64% of the colour of simulated industrial wastewater. Therefore, the alkaline fusion step proved to be a route capable of transforming the coal bottom ash into an adsorbent with improved textural and adsorptive properties.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Carvão Mineral , Cinza de Carvão/química , Cinética , Têxteis , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 27(10): 10484-10494, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31940142

RESUMO

Sugarcane bagasse, a largely available waste worldwide, was submitted to solid-state fermentation (SSF) using the fungus Metarhizium anisopliae, aiming to produce enzymes. The solid waste generated from SSF was tested as an alternative biosorbent to treat colored effluents containing crystal violet (CV) dye. The biosorbent, here named BW (bagasse waste), was characterized, and experimental tests were performed to verify the influence of pH and dosage on the CV biosorption. Isotherms and biosorption kinetics were performed, and the biosorption thermodynamic parameters were determined. The potential of BW was also evaluated for the treatment of a simulated textile effluent. The maximum biosorption capacity was 131.2 mg g-1 at 328 K, and the Liu was the most appropriate model to represent equilibrium data. The biosorption was spontaneous and endothermic. The use of BW in the simulated effluent showed that it is an efficient material, reaching color removal values of 85%. Therefore, the sugarcane bagasse generated from SSF can be considered a potential biosorbent to remove CV from textile effluents. This finding is relevant from the total environment viewpoint, since, at the same time, SSF generates enzymes and a solid waste, which in turn can be used as biosorbent to treat colored effluents.


Assuntos
Violeta Genciana , Poluentes Químicos da Água/análise , Adsorção , Biomassa , Corantes , Concentração de Íons de Hidrogênio , Cinética , Resíduos Sólidos , Termodinâmica
4.
Environ Sci Pollut Res Int ; 27(10): 11184-11194, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31960236

RESUMO

Dyes are widely used in many industrial sectors, many contain harmful substances to human health, and their release into the environment entails several environmental problems, generating a major worldwide concern as water resources are increasingly limited. The development of cheap and efficient biosorbents that remove these pollutants is of utmost importance. In this study, powdered seeds of the araticum fruit (Annona crassiflora) were used in the biosorption of crystal violet (CV) dye from aqueous solutions and simulated textile effluents. Through the characterization techniques, it can be observed that the material presented an amorphous structure, containing an irregular surface composed mainly by groups containing carbon, hydrogen, and oxygen. CV biosorption was favored at the natural pH of the solution (7.5) for a dosage of 0.7 g L-1 of araticum seed powder. The pseudo-second-order model was the most suitable to represent the biosorption kinetics in the removal of the CV. Biosorption capacity reached equilibrium in the first minutes at the lowest concentrations, and, at the highest, after 120 min. The equilibrium data were well represented by the Langmuir model, with a maximum biosorption capacity of 300.96 mg g-1 at 328 K. Biosorption had a spontaneous and endothermic nature. In the treatment of a simulated effluent, the biosorbent removed 87.8% of the color, proving to be efficient. Therefore, the araticum seeds powder (ASP) can be used as a low-cost material for the treatment of colored effluents containing the crystal violet (CV) dye.


Assuntos
Annona , Poluentes Químicos da Água/análise , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Sementes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA