Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 38(4): 483-493, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29233030

RESUMO

Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.


Assuntos
Biotecnologia/métodos , Celulose/química , Biocombustíveis , Biomassa , Carboidratos/química , Hidrodinâmica
2.
Braz. j. microbiol ; Braz. j. microbiol;42(2): 693-702, Apr.-June 2011. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-590016

RESUMO

Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5 percent) were the major isolated group identified, followed by yeasts (30.6 percent) and acetic acid bacteria (8.9 percent). Lactobacillus paracasei (89 isolates), Lactobacillus parabuchneri (41 isolates), Lactobacillus casei (32 isolates), Lactobacillus kefiri (31 isolates), Lactococcus lactis (24 isolates), Acetobacter lovaniensis (32 isolates), Kluyveromyces lactis (31 isolates), Kazachstania aerobia (23 isolates), Saccharomyces cerevisiae (41 isolates) and Lachancea meyersii (15 isolates) were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long) cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

3.
Braz J Microbiol ; 42(2): 693-702, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031681

RESUMO

Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5%) were the major isolated group identified, followed by yeasts (30.6%) and acetic acid bacteria (8.9%). Lactobacillus paracasei (89 isolates), Lactobacillus parabuchneri (41 isolates), Lactobacillus casei (32 isolates), Lactobacillus kefiri (31 isolates), Lactococcus lactis (24 isolates), Acetobacter lovaniensis (32 isolates), Kluyveromyces lactis (31 isolates), Kazachstania aerobia (23 isolates), Saccharomyces cerevisiae (41 isolates) and Lachancea meyersii (15 isolates) were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long) cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

4.
Artigo em Inglês | VETINDEX | ID: vti-444708

RESUMO

Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5%) were the major isolated group identified, followed by yeasts (30.6%) and acetic acid bacteria (8.9%). Lactobacillus paracasei (89 isolates), Lactobacillus parabuchneri (41 isolates), Lactobacillus casei (32 isolates), Lactobacillus kefiri (31 isolates), Lactococcus lactis (24 isolates), Acetobacter lovaniensis (32 isolates), Kluyveromyces lactis (31 isolates), Kazachstania aerobia (23 isolates), Saccharomyces cerevisiae (41 isolates) and Lachancea meyersii (15 isolates) were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long) cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

5.
Int J Food Microbiol ; 143(3): 173-82, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20828848

RESUMO

Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16° Brix with a sucrose solution, and batch fermentations were performed at 22 °C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Y(p/s)), biomass (Y(x/s)), glycerol (Y(g/s)) and acetic acid (Y(ac/s)), the volumetric productivity of ethanol (Q(p)), the biomass productivity (P(x)), and the fermentation efficiency (E(f)) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the E(f), Y(p/s), Y(g/s), and Y(x/s) parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 µg/L), CAT-1 (80,317.01 µg/L), VR-1 (67,573.99 µg/L) and S. bayanus CBS 1505 (71,660.32 µg/L). The highest concentrations of ethyl esters were 454.33 µg/L, 440.33 µg/L and 438 µg/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 µg/L) and higher alcohols (83,996.33 µg/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters.


Assuntos
Bebidas/microbiologia , Rosaceae/metabolismo , Saccharomyces/classificação , Saccharomyces/metabolismo , Bebidas/análise , Carboidratos/química , Etanol/química , Fermentação/fisiologia , Especificidade da Espécie , Compostos Orgânicos Voláteis/química
6.
Bioresour Technol ; 101(22): 8843-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20619643

RESUMO

Whey valorization concerns have led to recent interest on the production of whey beverage simulating kefir. In this study, the structure and microbiota of Brazilian kefir grains and beverages obtained from milk and whole/deproteinised whey was characterized using microscopy and molecular techniques. The aim was to evaluate its stability and possible shift of probiotic bacteria to the beverages. Fluorescence staining in combination with Confocal Laser Scanning Microscopy showed distribution of yeasts in macro-clusters among the grain's matrix essentially composed of polysaccharides (kefiran) and bacteria. Denaturing gradient gel electrophoresis displayed communities included yeast affiliated to Kluyveromyces marxianus, Saccharomyces cerevisiae, Kazachatania unispora, bacteria affiliated to Lactobacillus kefiranofaciens subsp. Kefirgranum, Lactobacillus kefiranofaciens subsp. Kefiranofaciens and an uncultured bacterium also related to the genus Lactobacillus. A steady structure and dominant microbiota, including probiotic bacteria, was detected in the analyzed kefir beverages and grains. This robustness is determinant for future implementation of whey-based kefir beverages.


Assuntos
Bactérias Aeróbias/classificação , Bactérias Aeróbias/metabolismo , Bebidas/microbiologia , Queijo/microbiologia , Produtos Fermentados do Leite/microbiologia , Especificidade da Espécie
7.
Biotechnol Lett ; 29(12): 1973-6, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17700998

RESUMO

Chemically pre-treated brewer's spent grain was saccharified with cellulase producing a hydrolysate with approx. 50 g glucose l(-1). This hydrolysate was used as a fermentation medium without any nutrient supplementation by Lactobacillus delbrueckii, which produced L-lactic acid (5.4 g l(-1)) at 0.73 g g(-1) glucose consumed (73% efficiency). An inoculum of 1 g dry cells l(-1) gave the best yield of the process, but the pH decrease affected the microorganism capacity to consume glucose and convert it into lactic acid.


Assuntos
Grão Comestível/metabolismo , Resíduos Industriais , Ácido Láctico/biossíntese , Lactobacillus delbrueckii/metabolismo , Celulose/metabolismo , Grão Comestível/química , Fermentação , Glucose/metabolismo
8.
Biotechnol Prog ; 21(4): 1352-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16080723

RESUMO

Brewer's spent grain, the main byproduct of breweries, was hydrolyzed with dilute sulfuric acid to produce a hemicellulosic hydrolysate (containing xylose as the main sugar). The obtained hydrolysate was used as cultivation medium by Candidaguilliermondii yeast in the raw form (containing 20 g/L xylose) and after concentration (85 g/L xylose), and the kinetic behavior of the yeast during xylitol production was evaluated in both media. Assays in semisynthetic media were also performed to compare the yeast performance in media without toxic compounds. According to the results, the kinetic behavior of the yeast cultivated in raw hydrolysate was as effective as in semisynthetic medium containing 20 g/L xylose. However, in concentrated hydrolysate medium, the xylitol production efficiency was 30.6% and 42.6% lower than in raw hydrolysate and semisynthetic medium containing 85 g/L xylose, respectively. In other words, the xylose-to-xylitol bioconversion from hydrolysate medium was strongly affected when the initial xylose concentration was increased; however, similar behavior did not occur from semisynthetic media. The lowest efficiency of xylitol production from concentrated hydrolysate can be attributed to the high concentration of toxic compounds present in this medium, resulting from the hydrolysate concentration process.


Assuntos
Candida/metabolismo , Grão Comestível/metabolismo , Microbiologia Industrial/métodos , Polissacarídeos/metabolismo , Xilitol/biossíntese , Arabinose/metabolismo , Arabinose/farmacologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Proliferação de Células , Meios de Cultura , Relação Dose-Resposta a Droga , Fermentação , Hidrólise , Cinética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Xilose/farmacologia
9.
Biotechnol Lett ; 25(14): 1171-4, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12967007

RESUMO

A 23 full factorial design was used to study the influence of different experimental variables, namely wort gravity, fermentation temperature and nutrient supplementation, on ethanol productivity from high gravity wort fermentation by Saccharomyces cerevisiae (lager strain), under pilot plant conditions. The highest ethanol productivity (0.69 g l(-1) h(-1)) was obtained at 20 degrees P [degrees P is the weight of extract (sugar) equivalent to the weight of sucrose in a 100 g solution at 20 degrees C], 15 degrees C, with the addition of 0.8% (w/v) yeast extract, 24 mg l(-1) ergosterol and 0.24% (v/v) Tween 80.


Assuntos
Reatores Biológicos , Etanol/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Biomassa , Meios de Cultura , Fermentação , Hipergravidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA