Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt D): 112348, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767822

RESUMO

Since the start of the COVID-19 pandemic many studies investigated the correlation between climate variables such as air quality, humidity and temperature and the lethality of COVID-19 around the world. In this work we investigate the use of climate variables, as additional features to train a data-driven multivariate forecast model to predict the short-term expected number of COVID-19 deaths in Brazilian states and major cities. The main idea is that by adding these climate features as inputs to the training of data-driven models, the predictive performance improves when compared to equivalent single input models. We use a Stacked LSTM as the network architecture for both the multivariate and univariate model. We compare both approaches by training forecast models for the COVID-19 deaths time series of the city of São Paulo. In addition, we present a previous analysis based on grouping K-means on AQI curves. The results produced will allow achieving the application of transfer learning, once a locality is eventually added to the task, regressing out using a model based on the cluster of similarities in the AQI curve. The experiments show that the best multivariate model is more skilled than the best standard data-driven univariate model that we could find, using as evaluation metrics the average fitting error, average forecast error, and the profile of the accumulated deaths for the forecast. These results show that by adding more useful features as input to a multivariate approach could further improve the quality of the prediction models.


Assuntos
Poluição do Ar , COVID-19 , Poluição do Ar/análise , Brasil , Humanos , Umidade , Pandemias , SARS-CoV-2 , Temperatura
2.
Sensors (Basel) ; 19(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744069

RESUMO

Disaster robotics has become a research area in its own right, with several reported cases of successful robot deployment in actual disaster scenarios. Most of these disaster deployments use aerial, ground, or underwater robotic platforms. However, the research involving autonomous boats or Unmanned Surface Vehicles (USVs) for Disaster Management (DM) is currently spread across several publications, with varying degrees of depth, and focusing on more than one unmanned vehicle-usually under the umbrella of Unmanned Marine Vessels (UMV). Therefore, the current importance of USVs for the DM process in its different phases is not clear. This paper presents the first comprehensive survey about the applications and roles of USVs for DM, as far as we know. This work demonstrates that there are few current deployments in disaster scenarios, with most of the research in the area focusing on the technological aspects of USV hardware and software, such as Guidance Navigation and Control, and not focusing on their actual importance for DM. Finally, to guide future research, this paper also summarizes our own contributions, the lessons learned, guidelines, and research gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA