Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 109: 25-30, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29224623

RESUMO

Cellulase and hemicellulase activities in a 1:1 ratio of enzymes extracted from Chrysoporthe cubensis and Penicillium pinophilum were evaluated in the presence of known monocomponent phenolic inhibitors and also with phenol mixtures derived from alkali pretreated sugarcane bagasse. The cellulolytic activities from C. cubensis:P. pinophilum displayed a much higher tolerance to phenolic inhibitors than equivalent enzyme activities obtained from Trichoderma reesei and Aspergillus niger. Enzymes from T. reesei and A. niger were deactivated at 0.3 and 1.5mg phenols/mg protein, respectively, as reported previously, while enzymes from C. cubensis:P. pinophilum resisted deactivation at 35mg phenols/mg protein. However, tolerance of xylanase with respect to phenols required the presence of laccase. Removal of laccase (enzyme) activity using sodium azide resulted in a 2x higher xylanase deactivation (from 40% to 80%). This paper identifies enzymes that are phenol tolerant, and whose adoption for lignocellulose hydrolysis could contribute to reductions in enzyme loading needed to hydrolyze alkali pretreated lignocellulosic substrates in the presence of lignin derived phenols.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Penicillium/enzimologia , Ascomicetos/metabolismo , Celulase/metabolismo , Ativação Enzimática , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA